共 64 条
[51]
Wang L., Wang K., Pan C., Xu W., Aslam N., Hanzo L., Multi-Agent deep reinforcement learning-based trajectory planning for multi-UAV assisted mobile edge computing, IEEE Trans. Cogn. Commun. Netw., 7, 1, pp. 73-84, (2021)
[52]
Zhang Z., Wu Z., Zhang H., Wang J., Meta-learning-based deep reinforcement learning for multiobjective optimization problems, IEEE Trans. Neural Netw. Learn. Syst., 34, 10, pp. 7978-7991, (2023)
[53]
Lecun Y., Bottou L., Bengio Y., Haffner P., Gradient-based learning applied to document recognition, Proc. IEEE, 86, 11, pp. 2278-2324, (1998)
[54]
Krizhevsky A., Hinton G., Learning Multiple Layers of Features from Tiny Images, (2009)
[55]
Chen L., Hu B., Guan Z.-H., Zhao L., Shen X., Multiagent metareinforcement learning for adaptive multipath routing optimization, IEEE Trans. Neural Netw. Learn. Syst., 33, 10, pp. 5374-5386, (2022)
[56]
Kingma D.P., Ba J., Adam: A Method for Stochastic Optimization, (2014)
[57]
Foerster J., Assael I.A., De Freitas N., Whiteson S., Learning to communicate with deep multi-Agent reinforcement learning, Proc. Adv. Neural Inf. Process. Syst., 29, pp. 1-9, (2016)
[58]
McMahan B., Moore E., Ramage D., Hampson B.A.Y., Arcas S., Communication-efficient learning of deep networks from decentralized data, Proc. 20th Int. Conf. Artif. Intell. Statist., 54, pp. 1273-1282, (2017)
[59]
Li C., Zeng X., Zhang M., Cao Z., PyramidFL: A fine-grained client selection framework for efficient federated learning, Proc. 28th Annu. Int. Conf. Mobile Comput. Netw., pp. 158-171, (2022)
[60]
Tang M., Et al., FedCor: Correlation-based active client selection strategy for heterogeneous federated learning, Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 10102-10111, (2022)