共 41 条
- [21] Scikit-learn: Machine learning in Python—scikit-learn 1.1.2 documentation [Internet, Cited 2022 Sep 8]. Available From
- [22] Bergstra J., Yamins D., Cox D.D., Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures, : Proceedings of the 30Th International Conference on International Conference on Machine Learning - Volume 28. Atlanta, GA. Jmlr.Org
- [23] 2013. P. I-115–I-123. (ICML’13).
- [24] Imbalanced-learn documentation—Version 0.9.1 [Internet, Cited 2022 Sep 8]. Available From
- [25] Kubat M., Matwin S., Addressing the curse of imbalanced training sets: one-sided selection, Fourteenth Int Conf Mach Learn, 97, 1, pp. 1-8, (1997)
- [26] Estabrooks A., Jo T., Japkowicz N., A multiple resampling method for learning from imbalanced data sets, Comput Intell, 20, 1, pp. 18-36, (2004)
- [27] Zhang J., Mani I., KNN approach to unbalanced data distributions: A case study involving information extraction, Proceedings of the ICML’2003 Workshop on Learning from Imbalanced Datasets, (2003)
- [28] Chawla N.V., Bowyer K.W., Hall L.O., Kegelmeyer W.P., SMOTE: synthetic minority over-sampling technique, J Artif Intell Res, 16, 1, pp. 321-357, (2002)
- [29] Fernandez A., Garcia S., Herrera F., Chawla N.V., SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary, J Artif Intell Res, 20, 61, pp. 863-905, (2018)
- [30] Zou H., Hastie T., Regularization and variable selection via the elastic net, J R Stat Soc Ser B Stat Methodol, 67, 2, pp. 301-320, (2005)