Heisenberg-Limited Quantum Lidar for Joint Range and Velocity Estimation

被引:3
作者
Reichert, Maximilian [1 ,2 ]
Zhuang, Quntao [3 ,4 ]
Sanz, Mikel [1 ,2 ,5 ,6 ]
机构
[1] Univ Basque Country UPV EHU, Dept Phys Chem, Apartado 644, Bilbao 48080, Spain
[2] Univ Basque Country UPV EHU, EHU Quantum Ctr, Apartado 644, Bilbao 48080, Spain
[3] Univ Southern Calif, Ming Hsieh Dept Elect & Comp Engn, Los Angeles, CA 90089 USA
[4] Univ Southern Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA
[5] Basque Fdn Sci, IKERBASQUE, Plaza Euskadi 5, Bilbao 48009, Spain
[6] Basque Ctr Appl Math BCAM, Alameda Mazarredo 14, Bilbao 48009, Spain
关键词
Homodyne detection - Multiphoton processes - Optical fibers - Optical losses - Photons - Quantum electronics - Squeezed light - Velocity distribution;
D O I
10.1103/PhysRevLett.133.130801
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a quantum lidar protocol to jointly estimate the range and velocity of a target by illuminating it with a single beam of pulsed displaced squeezed light. In the lossless scenario, we show that the meansquared errors of both range and velocity estimations are inversely proportional to the squared number of signal photons, simultaneously attaining the Heisenberg limit. This is achieved by engineering the multiphoton squeezed state of the temporal modes and adopting standard homodyne detection. To assess the robustness of the quantum protocol, we incorporate photon losses and detuning of the homodyne receiver. Our findings reveal a quantum advantage over the best-known classical strategy across a wide range of round-trip transmissivities. Particularly, the quantum advantage is substantial for sufficiently small losses, even when compared to the optimal-potentially unattainable-classical performance limit. The quantum advantage also extends to the practical case where quantum engineering is done on top of a strong classical coherent state with watts of power. This, together with the robustness against losses and the feasibility of the measurement with state-of-the-art technology, make the protocol highly promising for near-term implementation.
引用
收藏
页数:6
相关论文
共 33 条
[1]  
aps, About us, DOI [10.1103/PhysRevLett.133.130801, DOI 10.1103/PHYSREVLETT.133.130801]
[2]  
Barnett S., 2002, Methods in Theoretical Quantum Optics
[3]   Multi-parameter estimation beyond quantum Fisher information [J].
Demkowicz-Dobrzanski, Rafal ;
Gorecki, Wojciech ;
Guta, Madalin .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (36)
[4]   Estimation of a parameter encoded in the modal structure of a light beam: a quantum theory [J].
Gessner, Manuel ;
Treps, Nicolas ;
Fabre, Claude .
OPTICA, 2023, 10 (08) :996-999
[5]   Positioning and clock synchronization through entanglement [J].
Giovannetti, V ;
Lloyd, S ;
Maccone, L .
PHYSICAL REVIEW A, 2002, 65 (02) :9
[6]   Quantum-enhanced positioning and clock synchronization [J].
Giovannetti, V ;
Lloyd, S ;
Maccone, L .
NATURE, 2001, 412 (6845) :417-419
[7]   Time dependence of particle creation from accelerating mirrors [J].
Good, Michael R. R. ;
Anderson, Paul R. ;
Evans, Charles R. .
PHYSICAL REVIEW D, 2013, 88 (02)
[8]  
Helstrom C.W., 1960, STAT THEORY SIGNAL D
[9]   Quantum-Limited Estimation of Range and Velocity [J].
Huang, Zixin ;
Lupo, Cosmo ;
Kok, Pieter .
PRX QUANTUM, 2021, 2 (03)
[10]   Entanglement-enhanced quantum strategies for accurate estimation of multibody-group motion and moving-object characteristics [J].
Li, Yongqiang ;
Ren, Changliang .
PHYSICAL REVIEW A, 2023, 108 (06)