GelMA hydrogels reinforced by PCL@GelMA nanofibers and bioactive glass induce bone regeneration in critical size cranial defects

被引:6
作者
Yu, Chenghao [1 ,2 ,4 ]
Chen, Jinli [4 ]
Wang, Tianrui [5 ]
Wang, Yawen [1 ,6 ]
Zhang, Xiaopei [1 ,6 ]
Zhang, Zhuoli [7 ]
Wang, Yuanfei [3 ]
Yu, Tengbo [2 ]
Wu, Tong [1 ,6 ]
机构
[1] Qingdao Univ, Med Res Ctr, Affiliated Hosp, Qingdao 266000, Peoples R China
[2] Univ Hlth & Rehabil Sci, Qingdao Municipal Hosp, Dept Orthoped Surg, Qingdao 266071, Peoples R China
[3] Qingdao Univ, Qingdao Stomatol Hosp, Cent Lab, Qingdao 266001, Peoples R China
[4] Qingdao Univ, Affiliated Hosp, Dept Sports Med, Qingdao 266000, Peoples R China
[5] Qingdao Univ, Affiliated Hosp, Dept Traumatol, Qingdao 266000, Peoples R China
[6] Qingdao Univ, Coll Text & Clothing, Shandong Key Lab Med & Hlth Text Mat, Qingdao 266071, Peoples R China
[7] Univ Calif Irvine, Radiol Pathol & BME, Irvine, CA 92617 USA
关键词
GelMA; Nanofiber; Bioactive glass; Organic-inorganic composite; Bone regeneration; IN-VITRO; SCAFFOLDS; DIFFERENTIATION; NANOPARTICLES;
D O I
10.1186/s12951-024-02980-w
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BackgroundThe process of bone healing is complex and involves the participation of osteogenic stem cells, extracellular matrix, and angiogenesis. The advancement of bone regeneration materials provides a promising opportunity to tackle bone defects. This study introduces a composite hydrogel that can be injected and cured using UV light.ResultsHydrogels comprise bioactive glass (BG) and PCL@GelMA coaxial nanofibers. The addition of BG and PCL@GelMA coaxial nanofibers improves the hydrogel's mechanical capabilities (353.22 +/- 36.13 kPa) and stability while decreasing its swelling (258.78 +/- 17.56%) and hydration (72.07 +/- 1.44%) characteristics. This hydrogel composite demonstrates exceptional biocompatibility and angiogenesis, enhances osteogenic development in bone marrow mesenchymal stem cells (BMSCs), and dramatically increases the expression of critical osteogenic markers such as ALP, RUNX2, and OPN. The composite hydrogel significantly improves bone regeneration (25.08 +/- 1.08%) in non-healing calvaria defects and promotes the increased expression of both osteogenic marker (OPN) and angiogenic marker (CD31) in vivo. The expression of OPN and CD31 in the composite hydrogel was up to 5 and 1.87 times higher than that of the control group at 12 weeks.ConclusionWe successfully prepared a novel injectable composite hydrogel, and the design of the composite hydrogels shows significant potential for enhancing biocompatibility, angiogenesis, and improving osteogenic and angiogenic marker expression, and has a beneficial effect on producing an optimal microenvironment that promotes bone repair.
引用
收藏
页数:19
相关论文
共 51 条
[1]   Extracellular calcium modulates in vitro bone marrow-derived Flk-1+ CD34+ progenitor cell chemotaxis and differentiation through a calcium-sensing receptor [J].
Aguirre, A. ;
Gonzalez, A. ;
Planell, J. A. ;
Engel, E. .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2010, 393 (01) :156-161
[2]   Bioactive and electrically conductive GelMA-BG-MWCNT nanocomposite hydrogel bone biomaterials [J].
Arambula-Maldonado, Rebeca ;
Liu, Yuqing ;
Xing, Malcolm ;
Mequanint, Kibret .
BIOMATERIALS ADVANCES, 2023, 154
[3]   Fabrication of hydrogel based nanocomposite scaffold containing bioactive glass nanoparticles for myocardial tissue engineering [J].
Barabadi, Zahra ;
Azami, Mahmoud ;
Sharifi, Esmaeel ;
Karimi, Roya ;
Lotfibakhshaiesh, Nasrin ;
Roozafzoon, Reza ;
Joghataei, Mohammad Taghi ;
Ai, Jafar .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2016, 69 :1137-1146
[4]   Gelatin and Bioactive Glass Composites for Tissue Engineering: A Review [J].
Barreto, Maria E. V. ;
Medeiros, Rebeca P. P. ;
Shearer, Adam ;
Fook, Marcus V. L. ;
Montazerian, Maziar ;
Mauro, John C. C. .
JOURNAL OF FUNCTIONAL BIOMATERIALS, 2023, 14 (01)
[5]  
Bello AB, 2020, TISSUE ENG PART B-RE, V26, P164, DOI [10.1089/ten.teb.2019.0256, 10.1089/ten.TEB.2019.0256]
[6]   A New Bioactive Glass/Collagen Hybrid Composite for Applications in Dentistry [J].
Bellucci, Devis ;
Salvatori, Roberta ;
Giannatiempo, Jessica ;
Anesi, Alexandre ;
Bortolini, Sergio ;
Cannillo, Valeria .
MATERIALS, 2019, 12 (13)
[7]   Controlling the bone regeneration properties of bioactive glass: Effect of particle shape and size [J].
Borden, Mark ;
Westerlund, Lance Erik ;
Lovric, Vedran ;
Walsh, William .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2022, 110 (04) :910-922
[8]   Effects of the carbonate content in carbonate apatite on bone replacement [J].
Deguchi, Kaai ;
Nomura, Shunsuke ;
Tsuchiya, Akira ;
Takahashi, Ichiro ;
Ishikawa, Kunio .
JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2022, 16 (02) :200-206
[9]   A chitosan-coated PCL/nano-hydroxyapatite aerogel integrated with a nanofiber membrane for providing antibacterial activity and guiding bone regeneration [J].
Deng, Xinyuan ;
Yu, Chenghao ;
Zhang, Xiaopei ;
Tang, Xunmeng ;
Guo, Qingxia ;
Fu, Manfei ;
Wang, Yuanfei ;
Fang, Kuanjun ;
Wu, Tong .
NANOSCALE, 2024, 16 (20) :9861-9874
[10]   In situ forming injectable hydrogels for drug delivery and wound repair [J].
Dimatteo, Robert ;
Darling, Nicole J. ;
Segura, Tatiana .
ADVANCED DRUG DELIVERY REVIEWS, 2018, 127 :167-184