AMIANet: Asymmetric Multimodal Interactive Augmentation Network for Semantic Segmentation of Remote Sensing Imagery

被引:1
作者
Liu, Tiancheng [1 ]
Hu, Qingwu [1 ]
Fan, Wenlei [1 ]
Feng, Haixia [1 ]
Zheng, Daoyuan [1 ]
机构
[1] Wuhan Univ, Sch Remote Sensing & Informat Engn, Hubei Luojia Lab, Wuhan 430072, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
基金
中国国家自然科学基金;
关键词
Point cloud compression; Feature extraction; Semantic segmentation; Semantics; Laser radar; Data mining; Deep learning; Light detection and ranging (LiDAR); multimodal fusion; remote sensing imagery; semantic segmentation; CONVOLUTIONAL NETWORKS; RGB; MULTISCALE;
D O I
10.1109/TGRS.2024.3466151
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In recent years, the inherent 2-D characteristics of optical images have led to a plateau in semantic segmentation performance. The complementary nature of light detection and ranging (LiDAR) point clouds and camera images can effectively enhance semantic segmentation capabilities, and thus, research into multimodal joint semantic segmentation is garnering increasing attention. However, the domain gaps between different dimensions present challenges for the fusion of multimodal data. In this article, we introduce a novel asymmetric multimodal interaction augmented network (AMIANet), which directly processes heterogeneous data from images and point clouds. The treatment of the disparities in modal data ensures consistency in the features of both modes. Through the newly developed synergistic multimodal interaction module (SMI Module), AMIANet is capable of combining the complementary characteristics of cross-modal data. This is achieved by interactively fusing and extracting precise and rich structural information from point cloud features to enhance image characteristics. The experimental results on the N3C-California, WHU-RRDSD, and ISPRS Vaihingen datasets demonstrate that AMIANet surpasses benchmark methods and current state-of-the-art (SOTA) approaches. The code will be available at https://github.com/2012153946/AMIANet.
引用
收藏
页数:15
相关论文
共 61 条
[41]   SPLATNet: Sparse Lattice Networks for Point Cloud Processing [J].
Su, Hang ;
Jampani, Varun ;
Sun, Deqing ;
Maji, Subhransu ;
Kalogerakis, Evangelos ;
Yang, Ming-Hsuan ;
Kautz, Jan .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :2530-2539
[42]   A Supervised Segmentation Network for Hyperspectral Image Classification [J].
Sun, Hao ;
Zheng, Xiangtao ;
Lu, Xiaoqiang .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 :2810-2825
[43]   Deep Multimodal Fusion Network for Semantic Segmentation Using Remote Sensing Image and LiDAR Data [J].
Sun, Yangjie ;
Fu, Zhongliang ;
Sun, Chuanxia ;
Hu, Yinglei ;
Zhang, Shengyuan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[44]   Developing a multi-filter convolutional neural network for semantic segmentation using high-resolution aerial imagery and LiDAR data [J].
Sun, Ying ;
Zhang, Xinchang ;
Xin, Qinchuan ;
Huang, Jianfeng .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 143 :3-14
[45]   POINT CLOUD SEGMENTATION FOR URBAN SCENE CLASSIFICATION [J].
Vosselman, George .
ISPRS2013-SSG, 2013, 40-7-W2 :257-262
[46]   Deep High-Resolution Representation Learning for Visual Recognition [J].
Wang, Jingdong ;
Sun, Ke ;
Cheng, Tianheng ;
Jiang, Borui ;
Deng, Chaorui ;
Zhao, Yang ;
Liu, Dong ;
Mu, Yadong ;
Tan, Mingkui ;
Wang, Xinggang ;
Liu, Wenyu ;
Xiao, Bin .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (10) :3349-3364
[47]   Imbalance knowledge-driven multi-modal network for land-cover semantic segmentation using aerial images and LiDAR point clouds [J].
Wang, Yameng ;
Wan, Yi ;
Zhang, Yongjun ;
Zhang, Bin ;
Gao, Zhi .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 202 :385-404
[48]   SGFNet: Semantic-Guided Fusion Network for RGB-Thermal Semantic Segmentation [J].
WangLi, Yike ;
Li, Gongyang ;
Liu, Zhi .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (12) :7737-7748
[49]   A new segmentation method for point cloud data [J].
Woo, H ;
Kang, E ;
Wang, SY ;
Lee, KH .
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2002, 42 (02) :167-178
[50]   CBAM: Convolutional Block Attention Module [J].
Woo, Sanghyun ;
Park, Jongchan ;
Lee, Joon-Young ;
Kweon, In So .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :3-19