AMIANet: Asymmetric Multimodal Interactive Augmentation Network for Semantic Segmentation of Remote Sensing Imagery

被引:1
作者
Liu, Tiancheng [1 ]
Hu, Qingwu [1 ]
Fan, Wenlei [1 ]
Feng, Haixia [1 ]
Zheng, Daoyuan [1 ]
机构
[1] Wuhan Univ, Sch Remote Sensing & Informat Engn, Hubei Luojia Lab, Wuhan 430072, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
基金
中国国家自然科学基金;
关键词
Point cloud compression; Feature extraction; Semantic segmentation; Semantics; Laser radar; Data mining; Deep learning; Light detection and ranging (LiDAR); multimodal fusion; remote sensing imagery; semantic segmentation; CONVOLUTIONAL NETWORKS; RGB; MULTISCALE;
D O I
10.1109/TGRS.2024.3466151
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In recent years, the inherent 2-D characteristics of optical images have led to a plateau in semantic segmentation performance. The complementary nature of light detection and ranging (LiDAR) point clouds and camera images can effectively enhance semantic segmentation capabilities, and thus, research into multimodal joint semantic segmentation is garnering increasing attention. However, the domain gaps between different dimensions present challenges for the fusion of multimodal data. In this article, we introduce a novel asymmetric multimodal interaction augmented network (AMIANet), which directly processes heterogeneous data from images and point clouds. The treatment of the disparities in modal data ensures consistency in the features of both modes. Through the newly developed synergistic multimodal interaction module (SMI Module), AMIANet is capable of combining the complementary characteristics of cross-modal data. This is achieved by interactively fusing and extracting precise and rich structural information from point cloud features to enhance image characteristics. The experimental results on the N3C-California, WHU-RRDSD, and ISPRS Vaihingen datasets demonstrate that AMIANet surpasses benchmark methods and current state-of-the-art (SOTA) approaches. The code will be available at https://github.com/2012153946/AMIANet.
引用
收藏
页数:15
相关论文
共 61 条
[1]  
Abhisek Maiti, 2023, 2023 IEEE CVF C COMP, P6537
[2]  
Ahmed A, 2020, INT BHURBAN C APPL S, P290, DOI [10.1109/IBCAST47879.2020.9044545, 10.1109/ibcast47879.2020.9044545]
[3]   UAV & satellite synergies for optical remote sensing applications: A literature review [J].
Alvarez-Vanhard, Emilien ;
Corpetti, Thomas ;
Houet, Thomas .
SCIENCE OF REMOTE SENSING, 2021, 3
[4]   Beyond RGB: Very high resolution urban remote sensing with multimodal deep networks [J].
Audebert, Nicolas ;
Le Saux, Bertrand ;
Lefevre, Sebastien .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 140 :20-32
[5]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[6]   Recent Advancements in Learning Algorithms for Point Clouds: An Updated Overview [J].
Camuffo, Elena ;
Mari, Daniele ;
Milani, Simone .
SENSORS, 2022, 22 (04)
[7]   ShapeConv: Shape-aware Convolutional Layer for Indoor RGB-D Semantic Segmentation [J].
Cao, Jinming ;
Leng, Hanchao ;
Lischinski, Dani ;
Cohen-Or, Danny ;
Tu, Changhe ;
Li, Yangyan .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :7068-7077
[8]   Multi-Feature Aggregation for Semantic Segmentation of an Urban Scene Point Cloud [J].
Chen, Jiaqing ;
Zhao, Yindi ;
Meng, Congtang ;
Liu, Yang .
REMOTE SENSING, 2022, 14 (20)
[9]   3D point cloud semantic segmentation toward large-scale unstructured agricultural scene classification [J].
Chen, Yi ;
Xiong, Yingjun ;
Zhang, Baohua ;
Zhou, Jun ;
Zhang, Qian .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2021, 190
[10]   (AF)2-S3Net: Attentive Feature Fusion with Adaptive Feature Selection for Sparse Semantic Segmentation Network [J].
Cheng, Ran ;
Razani, Ryan ;
Taghavi, Ehsan ;
Li, Enxu ;
Liu, Bingbing .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :12542-12551