A clustering algorithm for detecting differential deviations in the multivariate time-series IoT data based on sensor relationship

被引:0
作者
Idrees, Rabbia [1 ]
Maiti, Ananda [2 ]
Garg, Saurabh [1 ]
机构
[1] Univ Tasmania, Sch Informat & Commun Technol, Sandy Bay, Tas 7005, Australia
[2] Deakin Univ, Sch Informat Technol, Geelong, Vic 3216, Australia
关键词
Multivariate time series; Deviations; Outlier detection; Clustering; Sensor relationship; Anomaly detection;
D O I
10.1007/s10115-024-02303-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Internet-of-things (IoT) applications involve a large number of sensors reporting data as a set of time series. Often these data are related to each other based on the relationship of the sensors in the actual application. Any small deviations could indicate a change in the operation of the IoT system and potential problems with the IoT application's goals. It is often difficult to detect such deviations with respect to the relationship between the sensors. This paper presents the clustering algorithm that can efficiently detect all the deviations small or large in the complex and evolving IoT data streams with the help of sensor relationships. We have demonstrated with the help of experiments that our algorithm can efficiently handle high-dimensional data and accurately detect all the deviations. In this paper, we have presented two more algorithms, anomaly detection and outlier detection, that can efficiently categorize the deviations detected by our proposed clustering algorithm into anomalous or normal deviations. We have evaluated the performance and accuracy of our proposed algorithms on synthetic and real-world datasets. Furthermore, to check the effectiveness of our algorithms in terms of efficiency, we have prepared synthetic datasets in which we have increased the complexity of the deviations to show that our algorithm can handle complex IoT data streams efficiently.
引用
收藏
页码:2641 / 2690
页数:50
相关论文
共 50 条
[31]   Clustering Time-Series Gene Expression Data with Unequal Time Intervals [J].
Rueda, Luis ;
Bari, Ataul ;
Ngom, Alioune .
TRANSACTIONS ON COMPUTATIONAL SYSTEMS BIOLOGY X, 2008, 5410 :100-123
[32]   Wavelets-based clustering of multivariate time series [J].
D'Urso, Pierpaolo ;
Maharaj, Elizabeth Ann .
FUZZY SETS AND SYSTEMS, 2012, 193 :33-61
[33]   Multivariate time series clustering based on complex network [J].
Li, Hailin ;
Liu, Zechen .
PATTERN RECOGNITION, 2021, 115
[34]   LRZ CONVOLUTION: An Algorithm for Automatic Anomaly Detection in Time-series Data [J].
Marathe, Arunprasad P. .
PROCEEDINGS OF THE 32TH INTERNATIONAL CONFERENCE ON SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT, SSDBM 2020, 2020,
[35]   Independent component analysis for clustering multivariate time series data [J].
Wu, EHC ;
Yu, PLH .
ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS, 2005, 3584 :474-482
[36]   Clustering Structure Analysis in Time-Series Data With Density-Based Clusterability Measure [J].
Juho Jokinen ;
Tomi Rty ;
Timo Lintonen .
IEEE/CAA Journal of Automatica Sinica, 2019, 6 (06) :1332-1343
[37]   Fourier Magnitude-Based Privacy-Preserving Clustering on Time-Series Data [J].
Kim, Hea-Suk ;
Moon, Yang-Sae .
IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2010, E93D (06) :1648-1651
[38]   Clustering Structure Analysis in Time-Series Data With Density-Based Clusterability Measure [J].
Jokinen, Juho ;
Raty, Tomi ;
Lintonen, Timo .
IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2019, 6 (06) :1332-1343
[39]   Modified local Granger causality analysis based on Peter-Clark algorithm for multivariate time series prediction on IoT data [J].
Lv, Fei ;
Si, Shuaizong ;
Xiao, Xing ;
Ren, Weijie .
COMPUTATIONAL INTELLIGENCE, 2024, 40 (05)
[40]   S-KDGAN: Series-Knowledge Distillation With GANs for Anomaly Detection of Sensor Time-Series Data in Smart IoT [J].
Cheng, Weijun ;
Li, Yuelong ;
Ma, Tengfei .
IEEE SENSORS JOURNAL, 2024, 24 (15) :24344-24354