Deep Learning-Based Algorithms for Real-Time Lung Ultrasound Assisted Diagnosis

被引:1
作者
Muñoz, Mario [1 ,2 ]
Rubio, Adrián [1 ,2 ]
Cosarinsky, Guillermo [1 ]
Cruza, Jorge F. [1 ]
Camacho, Jorge [1 ]
机构
[1] Institute for Physical and Information Technologies, Spanish National Research Council, Madrid
[2] Electronic Department, Universidad de Alcalá, Alcalá de Henares
来源
Applied Sciences (Switzerland) | 2024年 / 14卷 / 24期
关键词
A-line; artificial intelligence (AI); assisted diagnosis; B-line; consolidations; convolutional neural network; deep learning; lung ultrasound (LUS); pleura; real-time;
D O I
10.3390/app142411930
中图分类号
学科分类号
摘要
Lung ultrasound is an increasingly utilized non-invasive imaging modality for assessing lung condition but interpreting it can be challenging and depends on the operator’s experience. To address these challenges, this work proposes an approach that combines artificial intelligence (AI) with feature-based signal processing algorithms. We introduce a specialized deep learning model designed and trained to facilitate the analysis and interpretation of lung ultrasound images by automating the detection and location of pulmonary features, including the pleura, A-lines, B-lines, and consolidations. Employing Convolutional Neural Networks (CNNs) trained on a semi-automatically annotated dataset, the model delineates these pulmonary patterns with the objective of enhancing diagnostic precision. Real-time post-processing algorithms further refine prediction accuracy by reducing false-positives and false-negatives, augmenting interpretational clarity and obtaining a final processing rate of up to 20 frames per second with accuracy levels of 89% for consolidation, 92% for B-lines, 66% for A-lines, and 92% for detecting normal lungs compared with an expert opinion. © 2024 by the authors.
引用
收藏
相关论文
共 33 条
  • [1] Ferreiro Gomez M., Dominguez Pazos S.J., The Role of Lung Ultrasound in the Management of Respiratory Emergencies, Open Respir. Arch, 4, (2022)
  • [2] Hansell L., Milross M., Delaney A., Tian D.H., Rajamani A., Ntoumenopoulos G., Barriers and facilitators to achieving competence in lung ultrasound: A survey of physiotherapists following a lung ultrasound training course, Aust. Crit. Care, 36, pp. 573-578, (2023)
  • [3] Soldati G., Smargiassi A., Demi L., Inchingolo R., Artifactual lung ultrasonography: It is a matter of traps, order, and disorder, Appl. Sci, 10, (2020)
  • [4] Bhoil R., Ahluwalia A., Chopra R., Surya M., Bhoil S., Signs and lines in lung ultrasound, J. Ultrason, 21, pp. e225-e233, (2021)
  • [5] Tung-Chen Y., Marti de Gracia M., Diez-Tascon A., Alonso-Gonzalez R., Agudo-Fernandez S., Parra-Gordo M.L., Ossaba-Velez S., Rodriguez-Fuertes P., Llamas-Fuentes R., Correlation between chest computed tomography and lung ultrasonography in patients with coronavirus disease 2019 (COVID-19), Ultrasound. Med. Biol, 46, pp. 2918-2926, (2020)
  • [6] Vieillard-Baron A., Goffi A., Mayo P., Lung ultrasonography as an alternative to chest computed tomography in COVID-19 pneumonia?, Intensive Care Med, 46, pp. 1908-1910, (2020)
  • [7] Demi L., Wolfram F., Klersy C., De Silvestri A., Ferretti V.V., Muller M., Miller D., Feletti F., Welnicki M., Buda N., Et al., New International Guidelines and Consensus on the Use of Lung Ultrasound, J. Ultrasound Med, 42, pp. 309-344, (2023)
  • [8] Gil-Rodriguez J., Perez de Rojas J., Aranda-Laserna P., Benavente-Fernandez A., Martos-Ruiz M., Peregrina-Rivas J.A., Guirao-Arrabal E., Ultrasound findings of lung ultrasonography in COVID-19: A systematic review, Eur. J. Radiol, 148, (2022)
  • [9] Amisha, Malik P., Pathania M., Rathaur V.K., Overview of artificial intelligence in medicine, J. Fam. Med. Prim. Care, 8, pp. 2328-2331, (2019)
  • [10] Cirrincione G., Cannata S., Cicceri G., Prinzi F., Currieri T., Lovino M., Militello C., Pasero E., Vitabile S., Transformer-Based Approach to Melanoma Detection, Sensors, 23, (2023)