Deep Learning-Based Algorithms for Real-Time Lung Ultrasound Assisted Diagnosis

被引:2
作者
Munoz, Mario [1 ,2 ]
Rubio, Adrian [1 ,2 ]
Cosarinsky, Guillermo [1 ]
Cruza, Jorge F. [1 ]
Camacho, Jorge [1 ]
机构
[1] Inst Phys & Informat Technol, Spanish Natl Res Council, Madrid 28006, Spain
[2] Univ Alcala, Elect Dept, Alcala De Henares 28805, Spain
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 24期
关键词
lung ultrasound (LUS); artificial intelligence (AI); convolutional neural network; deep learning; pleura; B-line; A-line; consolidations; assisted diagnosis; real-time;
D O I
10.3390/app142411930
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lung ultrasound is an increasingly utilized non-invasive imaging modality for assessing lung condition but interpreting it can be challenging and depends on the operator's experience. To address these challenges, this work proposes an approach that combines artificial intelligence (AI) with feature-based signal processing algorithms. We introduce a specialized deep learning model designed and trained to facilitate the analysis and interpretation of lung ultrasound images by automating the detection and location of pulmonary features, including the pleura, A-lines, B-lines, and consolidations. Employing Convolutional Neural Networks (CNNs) trained on a semi-automatically annotated dataset, the model delineates these pulmonary patterns with the objective of enhancing diagnostic precision. Real-time post-processing algorithms further refine prediction accuracy by reducing false-positives and false-negatives, augmenting interpretational clarity and obtaining a final processing rate of up to 20 frames per second with accuracy levels of 89% for consolidation, 92% for B-lines, 66% for A-lines, and 92% for detecting normal lungs compared with an expert opinion.
引用
收藏
页数:23
相关论文
共 36 条
[1]  
Amisha, 2019, J FAM MED PRIM CARE, V8, P2328, DOI [DOI 10.4103/jfmpc.jfmpc_440_19, 10.4103/jfmpc.jfmpc_440_19]
[2]   Pulmonary COVID-19: Learning Spatiotemporal Features Combining CNN and LSTM Networks for Lung Ultrasound Video Classification [J].
Barros, Bruno ;
Lacerda, Paulo ;
Albuquerque, Celio ;
Conci, Aura .
SENSORS, 2021, 21 (16)
[3]  
Bektas B, 2018, 2018 3RD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), P580, DOI 10.1109/UBMK.2018.8566380
[4]   Signs and lines in lung ultrasound [J].
Bhoil, Rohit ;
Ahluwalia, Ajay ;
Chopra, Rajesh ;
Surya, Mukesh ;
Bhoil, Sabina .
JOURNAL OF ULTRASONOGRAPHY, 2021, 21 (86) :E225-E233
[5]  
Camacho J., 2022, Int. J. Transl. Med, V2, P17, DOI [10.3390/ijtm2010002, DOI 10.3390/IJTM2010002]
[6]  
Camacho J., 2006, P EUR C NOND TEST EC
[7]   Transformer-Based Approach to Melanoma Detection [J].
Cirrincione, Giansalvo ;
Cannata, Sergio ;
Cicceri, Giovanni ;
Prinzi, Francesco ;
Currieri, Tiziana ;
Lovino, Marta ;
Militello, Carmelo ;
Pasero, Eros ;
Vitabile, Salvatore .
SENSORS, 2023, 23 (12)
[8]   New International Guidelines and Consensus on the Use of Lung Ultrasound [J].
Demi, Libertario ;
Wolfram, Frank ;
Klersy, Catherine ;
De Silvestri, Annalisa ;
Ferretti, Virginia Valeria ;
Muller, Marie ;
Miller, Douglas ;
Feletti, Francesco ;
Welnicki, Marcin ;
Buda, Natalia ;
Skoczylas, Agnieszka ;
Pomiecko, Andrzej ;
Damjanovic, Domagoj ;
Olszewski, Robert ;
Kirkpatrick, Andrew W. ;
Breitkreutz, Raoul ;
Mathis, Gebhart ;
Soldati, Gino ;
Smargiassi, Andrea ;
Inchingolo, Riccardo ;
Perrone, Tiziano .
JOURNAL OF ULTRASOUND IN MEDICINE, 2023, 42 (02) :309-344
[9]  
Ferreiro Gomez Manuel, 2022, Open Respir Arch, V4, P100206, DOI 10.1016/j.opresp.2022.100206
[10]   Ultrasound findings of lung ultrasonography in COVID-19: A systematic review [J].
Gil-Rodriguez, Jaime ;
Perez de Rojas, Javier ;
Aranda-Laserna, Pablo ;
Benavente-Fernandez, Alberto ;
Martos-Ruiz, Michel ;
Peregrina-Rivas, Jose-Antonio ;
Guirao-Arrabal, Emilio .
EUROPEAN JOURNAL OF RADIOLOGY, 2022, 148