Enhancing Solar Energy Production Forecasting Using Advanced Machine Learning and Deep Learning Techniques: A Comprehensive Study on the Impact of Meteorological Data

被引:0
|
作者
Shakhovska, Nataliya [1 ,2 ]
Medykovskyi, Mykola [1 ]
Gurbych, Oleksandr [1 ,3 ]
Mamchur, Mykhailo [1 ,3 ]
Melnyk, Mykhailo [1 ]
机构
[1] Lviv Polytech Natl Univ, Instutute Comp Sci & Informat Technol, UA-79013 Lvov, Ukraine
[2] Agr Univ Krakow, Dept Appl Math, PL-31120 Krakow, Poland
[3] Blackthorn AI Ltd, London EC1V 2NX, England
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2024年 / 81卷 / 02期
基金
欧盟地平线“2020”;
关键词
Solar energy prediction; machine learning; deep learning; FEATURE-SELECTION; CONSUMPTION; NETWORK;
D O I
10.32604/cmc.2024.056542
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The increasing adoption of solar photovoltaic systems necessitates accurate forecasting of solar energy production to enhance grid stability, reliability, and economic benefits. This study explores advanced machine learning (ML) and deep learning (DL) techniques for predicting solar energy generation, emphasizing the significant impact of meteorological data. A comprehensive dataset, encompassing detailed weather conditions and solar energy metrics, was collected and preprocessed to improve model accuracy. Various models were developed and trained with different preprocessing stages. Finally, three datasets were prepared. A novel hour-based prediction wrapper was introduced, utilizing external sunrise and sunset data to restrict predictions to daylight hours, thereby enhancing model performance. A cascaded stacking model incorporating association rules, weak predictors, and a modified stacking aggregation procedure was proposed, demonstrating enhanced generalization and reduced prediction errors. Results indicated that models trained on raw data generally performed better than those on stripped data. The Long Short-Term Memory (LSTM) with Inception layers' model was the most effective, achieving significant performance improvements through feature selection, data preprocessing, and innovative modeling techniques. The study underscores the potential to combine detailed meteorological data with advanced ML and DL methods to improve the accuracy of solar energy forecasting, thereby optimizing energy management and planning.
引用
收藏
页码:3147 / 3163
页数:17
相关论文
共 50 条
  • [21] Stability forecasting of perovskite solar cells utilizing various machine learning and deep learning techniques
    Mammeri, M.
    Bencherif, H.
    Dehimi, L.
    Hajri, A.
    Sasikumar, P.
    Syed, A.
    AL-Shwaiman, Hind A.
    JOURNAL OF OPTICS-INDIA, 2024,
  • [22] A Comprehensive Analysis on Question Classification Using Machine Learning and Deep Learning Techniques
    Kogilavani, S., V
    Malliga, S.
    Preethi, A.
    Nandhini, L.
    Praveen, S. R.
    MOBILE COMPUTING AND SUSTAINABLE INFORMATICS, 2022, 68 : 825 - 838
  • [23] Data on forecasting energy prices using machine learning
    Herrera, Gabriel Paes
    Constantino, Michel
    Tabak, Benjamin Miranda
    Pistori, Hemerson
    Su, Jen-Je
    Naranpanawa, Athula
    DATA IN BRIEF, 2019, 25
  • [24] Review on smart grid load forecasting for smart energy management using machine learning and deep learning techniques
    Biswal, Biswajit
    Deb, Subhasish
    Datta, Subir
    Ustun, Taha Selim
    Cali, Umit
    ENERGY REPORTS, 2024, 12 : 3654 - 3670
  • [25] A Hierarchical Approach Using Machine Learning Methods in Solar Photovoltaic Energy Production Forecasting
    Li, Zhaoxuan
    Rahman, S. M. Mahbobur
    Vega, Rolando
    Dong, Bing
    ENERGIES, 2016, 9 (01):
  • [26] Data-driven approach for hydrocarbon production forecasting using machine learning techniques
    Chahar, Jaiyesh
    Verma, Jayant
    Vyas, Divyanshu
    Goyal, Mukul
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 217
  • [27] Data Science in Economics: Comprehensive Review of Advanced Machine Learning and Deep Learning Methods
    Nosratabadi, Saeed
    Mosavi, Amirhosein
    Puhong Duan
    Ghamisi, Pedram
    Filip, Ferdinand
    Band, Shahab S.
    Reuter, Uwe
    Gama, Joao
    Gandomi, Amir H.
    MATHEMATICS, 2020, 8 (10) : 1 - 25
  • [28] Empirical Analysis for Crime Prediction and Forecasting Using Machine Learning and Deep Learning Techniques
    Safat, Wajiha
    Asghar, Soahail
    Gillani, Saira Andleeb
    IEEE ACCESS, 2021, 9 : 70080 - 70094
  • [29] Enhancing wind power forecasting from meteorological parameters using machine learning models
    Singh, Upma
    Rizwan, M.
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2022, 14 (06)
  • [30] A survey on advanced machine learning and deep learning techniques assisting in renewable energy generation
    Sri Revathi B.
    Environmental Science and Pollution Research, 2023, 30 : 93407 - 93421