Lightweight Small Target Detection Algorithm Based on YOLOv8 Network Improvement

被引:0
|
作者
Hao, Xiaoyi
Li, Ting [1 ]
机构
[1] Xian Polytech Univ, Sch Computat Sci & Comp Sci, Xian 710043, Peoples R China
来源
IEEE ACCESS | 2025年 / 13卷
基金
中国国家自然科学基金;
关键词
Feature extraction; Accuracy; Computational modeling; Autonomous aerial vehicles; YOLO; Complexity theory; Convolution; Robustness; Real-time systems; Transformers; loss function; model lightening; small target detection;
D O I
10.1109/ACCESS.2025.3529835
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The primary objective of this paper is to address the shortcomings of existing algorithms in the context of UAV-based object detection. The paper introduces SFD-YOLOv8, a lightweight algorithm based on YOLOv8n, with the aim of enhancing detection performance while maintaining a streamlined architecture. The innovation of SFD-YOLOv8 is characterised by its incorporation of several pioneering modules, including the Dilation-wise Residual (DWR) attention module and the FasterBlock module. The modules have been designed to optimise feature extraction and improve model efficiency. The paper also discusses the challenges associated with low accuracy in small target detection and high model complexity in UAV applications. It emphasises the necessity for efficient models capable of accurately identifying small targets with limited computational resources, a balance that existing algorithms frequently fail to achieve. The paper's contributions can be summarised as follows. Firstly, it proposes SFD-YOLOv8, a novel lightweight algorithm tailored for UAV applications. Secondly, it introduces the Dilation-wise Residual (DWR) attention module and FasterBlock module to optimise feature extraction and improve model efficiency. Thirdly, it presents the FocalEloU-Loss function, which significantly enhances detection accuracy by refining bounding box predictions. Finally, the Std detection layer is integrated into YOLOv8n, thereby enhancing the model's ability to accurately detect small targets. Experimental results demonstrate that SFD-YOLOv8 reduces parameters by 16.95% compared to YOLOv8n. On the VisDrone2019 dataset, it achieves 2.50% improvement in mAP@0.5 and a 1.40% increase in mAP@0.5-0.95.SFD-YOLOv8 demonstrates superior accuracy in comparison to other leading detection models, making it well-suited for real-time detection requirements.
引用
收藏
页码:14051 / 14062
页数:12
相关论文
共 50 条
  • [31] Improved YOLOv8 Urban Vehicle Target Detection Algorithm
    Xu, Degang
    Wang, Shuangchen
    Wang, Zaiqing
    Yin, Kedong
    Computer Engineering and Applications, 2024, 60 (18) : 136 - 146
  • [32] LAYN: Lightweight Multi-Scale Attention YOLOv8 Network for Small Object Detection
    Ma, Songzhe
    Lu, Huimin
    Liu, Jie
    Zhu, Yungang
    Sang, Pengcheng
    IEEE ACCESS, 2024, 12 : 29294 - 29307
  • [33] Small Target Detection in Refractive Panorama Surveillance Based on Improved YOLOv8
    Zheng, Xinli
    Zou, Jianxin
    Du, Shuai
    Zhong, Ping
    SENSORS, 2024, 24 (03)
  • [34] A Lightweight Strip Steel Surface Defect Detection Network Based on Improved YOLOv8
    Chu, Yuqun
    Yu, Xiaoyan
    Rong, Xianwei
    SENSORS, 2024, 24 (19)
  • [35] Small-Target Detection Based on Improved YOLOv8 for Infrared Imagery
    Wang, Huicong
    Ma, Kaijun
    Yue, Juan
    Li, Yuhan
    Huang, Jiaxin
    Liu, Jie
    Li, Linhan
    Wang, Xiaoyu
    Cai, Nengbin
    Gao, Sili
    ELECTRONICS, 2025, 14 (05):
  • [36] Intelligent monitoring of small target detection using YOLOv8
    Sun, Lei
    Shen, Yang
    ALEXANDRIA ENGINEERING JOURNAL, 2025, 112 : 701 - 710
  • [37] Lightweight YOLOv8 for Wheat Head Detection
    Fang, Chen
    Yang, Xiang
    IEEE ACCESS, 2024, 12 : 66214 - 66222
  • [38] Lightweight outdoor drowning detection based on improved YOLOv8
    Liu, Xiangju
    Shuai, Tao
    Liu, Dezeng
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2025, 22 (02)
  • [39] Remote sensing small object detection algorithm based on improved YOLOv8
    Peng, Yanfei
    Qian, Jiani
    Tu, Shiting
    Li, Pai
    2024 5TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATION, ICCEA 2024, 2024, : 1273 - 1278
  • [40] Small Object Detection Algorithm Based on Improved YOLOv8 for Remote Sensing
    Yi, Hao
    Liu, Bo
    Zhao, Bin
    Liu, Enhai
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 1734 - 1747