Computational Analysis of Self-Healing in Nanomaterials Using Neural Spike Algorithms

被引:0
作者
Seol, Jongho [1 ]
Kim, Jongyeop [2 ]
Kancharla, Abhilash [3 ]
机构
[1] Middle Georgia State Univ, Dept Comp Sci, Warner Robins, GA 31093 USA
[2] Georgia Southern Univ, Dept Informat Technol, Statesboro, GA 30458 USA
[3] Univ Tampa, Dept Comp Sci, Tampa, FL 33606 USA
关键词
nanomaterials; self-healing; neuronal spikes; computational modeling; quantum effects; dynamic recovery; DYNAMIC RELIABILITY-ANALYSIS; LATTICE-BOLTZMANN METHOD; MOLECULAR-DYNAMICS; NEURONAL-ACTIVITY; MODEL; PLASTICITY; CHEMISTRY; DESIGN;
D O I
10.3390/info15120794
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This computational study investigates dynamic self-healing processes in nanomaterials driven by neuronal spike activity. We developed a multiscale simulation framework that integrates neuronal dynamics, quantum mechanical effects, and material science principles. Our model incorporates a time-dependent neuron spike voltage equation coupled with a nanomaterial health update function, including quantum probability terms, to capture nanoscale effects. We employ reliability engineering concepts to assess system performance. Simulations reveal that neuronal spike patterns significantly influence self-healing dynamics, exhibiting non-linear behavior with quantum effects crucial to healing efficiency. Statistical analysis demonstrates a strong correlation between spike frequency and healing rate, identifying an optimal range for maximum recovery. Integrating quantum probabilities yields more accurate nanoscale behavior predictions than classical approaches alone. This study provides a foundation for understanding and optimizing neuronal spike-induced recovery in nanomaterials with potential applications in neural interfaces, intelligent materials, and biomedical devices.
引用
收藏
页数:30
相关论文
共 120 条
[51]   Carbon nanotube coating improves neuronal recordings [J].
Keefer, Edward W. ;
Botterman, Barry R. ;
Romero, Mario I. ;
Rossi, Andrew F. ;
Gross, Guenter W. .
NATURE NANOTECHNOLOGY, 2008, 3 (07) :434-439
[52]   Coarse-Grained Protein Models and Their Applications [J].
Kmiecik, Sebastian ;
Gront, Dominik ;
Kolinski, Michal ;
Wieteska, Lukasz ;
Dawid, Aleksandra Elzbieta ;
Kolinski, Andrzej .
CHEMICAL REVIEWS, 2016, 116 (14) :7898-7936
[53]  
Koch C., 1985, Biol Cybern, V53, P253
[54]  
Koch Christof, 1999, P1
[55]   Nanomaterials for Neural Interfaces [J].
Kotov, Nicholas A. ;
Winter, Jessica O. ;
Clements, Isaac P. ;
Jan, Edward ;
Timko, Brian P. ;
Campidelli, Stephane ;
Pathak, Smita ;
Mazzatenta, Andrea ;
Lieber, Charles M. ;
Prato, Maurizio ;
Bellamkonda, Ravi V. ;
Silva, Gabriel A. ;
Kam, Nadine Wong Shi ;
Patolsky, Fernando ;
Ballerini, Laura .
ADVANCED MATERIALS, 2009, 21 (40) :3970-4004
[56]   A complementary definition of nanomaterial [J].
Kreyling, Wolfgang G. ;
Semmler-Behnke, Manuela ;
Chaudhry, Qasim .
NANO TODAY, 2010, 5 (03) :165-168
[57]   Polymer nanocomposites [J].
Krishnamoorti, Ramanan ;
Vaia, Richard A. .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2007, 45 (24) :3252-3256
[58]  
Kruger Timm, 2017, Springer Int. Publ., V10, P4, DOI DOI 10.1007/978-3-319-44649-3
[59]   Recent Advances for Improving Functionality, Biocompatibility, and Longevity of Implantable Medical Devices and Deliverable Drug Delivery Systems [J].
Kutner, Neta ;
Kunduru, Konda Reddy ;
Rizik, Luna ;
Farah, Shady .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (44)
[60]   Biocompatibility of nanomaterials and their immunological properties [J].
Kyriakides, Themis R. ;
Raj, Arindam ;
Tseng, Tiffany H. ;
Xiao, Hugh ;
Nguyen, Ryan ;
Mohammed, Farrah S. ;
Halder, Saiti ;
Xu, Mengqing ;
Wu, Michelle J. ;
Bao, Shuozhen ;
Sheu, Wendy C. .
BIOMEDICAL MATERIALS, 2021, 16 (04)