MFFCI-YOLOv8: A Lightweight Remote Sensing Object Detection Network Based on Multiscale Features Fusion and Context Information

被引:4
作者
Xu, Sheng [1 ]
Song, Lin [2 ]
Yin, Junru [2 ]
Chen, Qiqiang [2 ]
Zhan, Tianming [3 ]
Huang, Wei [2 ]
机构
[1] Zhengzhou Univ Light Ind, Sch Elect Informat, Zhengzhou 450002, Peoples R China
[2] Zhengzhou Univ Light Ind, Sch Comp Sci & Technol, Zhengzhou 450002, Peoples R China
[3] Nanjing Audit Univ, Jiangsu Modern Intelligent Audit Integrated Applic, Sch Comp Sci, Nanjing 211815, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Accuracy; YOLO; Computational modeling; Convolution; Remote sensing; Neck; Logic gates; Sensors; Hardware; Light weight; object detection; remote sensing images (RSIs); YOLOv8s;
D O I
10.1109/JSTARS.2024.3474689
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Most current researches primarily focus on improving experimental accuracy using large models, often neglecting the deployment challenges. There is a growing need for lightweight algorithms in certain remote sensing devices. Moreover, remote sensing images (RSIs) often contain numerous small, densely distributed targets, which pose significant detection challenges. To address these issues, we have improved the YOLOv8s network and developed a lightweight remote sensing object detection (RSOD) network based on multiscale features fusion and context information (MFFCI-YOLOv8). This network combines multiscale feature fusion and contextual information to accurately detect objects in RSIs. First, we introduce the lightweight CSP bottleneck with attention module, which utilizes partial convolution calculation and SimAM attention mechanisms to decrease the number of parameters and computational complexity while enhancing feature extraction capabilities. Second, we design the gate spatial pyramid pooling fast module to enhance the model's perception of scale and contextual information, thus improving the detection of small objects. Last, we employ the multiscale fusion lightweight neck module for more efficient multiscale feature fusion, preventing the loss of small objects. Compared to YOLOv8s, our overall model reduces the number of parameters by 7.7% and FLOPs by 11.9%. We validated the accuracy of MFFCI-YOLOv8 on two remote sensing datasets, NWPU VHR-10 and VisDrone. The experimental results demonstrate that our model offers a low computational cost and high detection accuracy compared to other RSOD models and other YOLO models.
引用
收藏
页码:19743 / 19755
页数:13
相关论文
共 55 条
[1]  
Bochkovskiy A, 2020, Arxiv, DOI [arXiv:2004.10934, 10.48550/arXiv.2004.10934, DOI 10.48550/ARXIV.2004.10934]
[2]   Large-Scale Machine Learning with Stochastic Gradient Descent [J].
Bottou, Leon .
COMPSTAT'2010: 19TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STATISTICS, 2010, :177-186
[3]   Cascade R-CNN: Delving into High Quality Object Detection [J].
Cai, Zhaowei ;
Vasconcelos, Nuno .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :6154-6162
[4]   Run, Don't Walk: Chasing Higher FLOPS for Faster Neural Networks [J].
Chen, Jierun ;
Kao, Shiu-Hong ;
He, Hao ;
Zhuo, Weipeng ;
Wen, Song ;
Lee, Chul-Ho ;
Chan, S. -H. Gary .
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, :12021-12031
[5]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[6]   Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images [J].
Cheng, Gong ;
Zhou, Peicheng ;
Han, Junwei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (12) :7405-7415
[7]   A survey on object detection in optical remote sensing images [J].
Cheng, Gong ;
Han, Junwei .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2016, 117 :11-28
[8]   Lightweight aerial image object detection algorithm based on improved YOLOv5s [J].
Deng, Lixia ;
Bi, Lingyun ;
Li, Hongquan ;
Chen, Haonan ;
Duan, Xuehu ;
Lou, Haitong ;
Zhang, Hongyu ;
Bi, Jingxue ;
Liu, Haiying .
SCIENTIFIC REPORTS, 2023, 13 (01)
[9]   RepVGG: Making VGG-style ConvNets Great Again [J].
Ding, Xiaohan ;
Zhang, Xiangyu ;
Ma, Ningning ;
Han, Jungong ;
Ding, Guiguang ;
Sun, Jian .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :13728-13737
[10]   VisDrone-DET2019: The Vision Meets Drone Object Detection in Image Challenge Results [J].
Du, Dawei ;
Zhu, Pengfei ;
Wen, Longyin ;
Bian, Xiao ;
Ling, Haibin ;
Hu, Qinghua ;
Peng, Tao ;
Zheng, Jiayu ;
Wang, Xinyao ;
Zhang, Yue ;
Bo, Liefeng ;
Shi, Hailin ;
Zhu, Rui ;
Kumar, Aashish ;
Li, Aijin ;
Zinollayev, Almaz ;
Askergaliyev, Anuar ;
Schumann, Arne ;
Mao, Binjie ;
Lee, Byeongwon ;
Liu, Chang ;
Chen, Changrui ;
Pan, Chunhong ;
Huo, Chunlei ;
Yu, Da ;
Cong, Dechun ;
Zeng, Dening ;
Pailla, Dheeraj Reddy ;
Li, Di ;
Wang, Dong ;
Cho, Donghyeon ;
Zhang, Dongyu ;
Bai, Furui ;
Jose, George ;
Gao, Guangyu ;
Liu, Guizhong ;
Xiong, Haitao ;
Qi, Hao ;
Wang, Haoran ;
Qiu, Heqian ;
Li, Hongliang ;
Lu, Huchuan ;
Kim, Ildoo ;
Kim, Jaekyum ;
Shen, Jane ;
Lee, Jihoon ;
Ge, Jing ;
Xu, Jingjing ;
Zhou, Jingkai ;
Meier, Jonas .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, :213-226