A Practical Tutorial on Explainable AI Techniques

被引:2
|
作者
Bennetot, Adrien [1 ]
Donadello, Ivan [2 ]
Haouari, Ayoub el qadi el [1 ,3 ]
Dragoni, Mauro [4 ]
Frossard, Thomas [3 ]
Wagner, Benedikt [5 ]
Sarranti, Anna [6 ]
Tulli, Silvia [1 ]
Trocan, Maria [7 ]
Chatila, Raja [1 ]
Holzinger, Andreas [6 ,8 ]
Garcez, Artur d'avila [5 ]
Diaz-rodriguez, Natalia [9 ]
机构
[1] Sorbonne Univ, Paris, Ile De France, France
[2] Free Univ Bozen Bolzano, Bolzano, Italy
[3] Tinubu Sq, Paris, France
[4] Fdn Bruno Kessler, Trento, Italy
[5] City Univ London, London, England
[6] Univ Nat Resources & Life Sci, Vienna, Austria
[7] Inst Super Elect Paris ISEP, Paris, France
[8] Med Univ Graz, Inst Med Informat, Graz, Austria
[9] Univ Granada, Granada, Andalucia, Spain
基金
奥地利科学基金会;
关键词
Explainable artificial intelligence; machine learning; deep learning; interpretability; shapley; Grad-CAM; layer-wise relevance propagation; DiCE; counterfactual explanations; TS4NLE; neural-symbolic learning; CLASSIFICATION; EXPLANATIONS; LANGUAGE;
D O I
10.1145/3670685
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The past years have been characterized by an upsurge in opaque automatic decision support systems, such as Deep Neural Networks (DNNs). Although DNNs have great generalization and prediction abilities, it is difficult to obtain detailed explanations for their behavior. As opaque Machine Learning models are increasingly being employed to make important predictions in critical domains, there is a danger of creating and using decisions that are not justifiable or legitimate. Therefore, there is a general agreement on the importance of endowing DNNs with explainability. EXplainable Artificial Intelligence (XAI) techniques can serve to verify and certify model outputs and enhance them with desirable notions such as trustworthiness, accountability, transparency, and fairness. This guide is intended to be the go-to handbook for anyone with a computer science background aiming to obtain an intuitive insight from Machine Learning models accompanied by explanations out-of-the-box. The article aims to rectify the lack of a practical XAI guide by applying XAI techniques, in particular, day-to-day models, datasets and use-cases. In each chapter, the reader will find a description of the proposed method as well as one or several examples of use with Python notebooks. These can be easily modified to be applied to specific applications. We also explain what the prerequisites are for using each technique, what the user will learn about them, and which tasks they are aimed at.
引用
收藏
页数:44
相关论文
共 50 条
  • [31] A Practical Grafting Model Based Explainable AI for Predicting Corporate Financial Distress
    Chou, Tsung-Nan
    BUSINESS INFORMATION SYSTEMS WORKSHOPS, BIS 2019, 2019, 373 : 5 - 15
  • [32] From "Explainable AI" to "Graspable AI"
    Ghajargar, Maliheh
    Bardzell, Jeffrey
    Renner, Alison Smith
    Krogh, Peter Gall
    Hook, Kristina
    Cuartielles, David
    Boer, Laurens
    Wiberg, Mikael
    PROCEEDINGS OF THE FIFTEENTH INTERNATIONAL CONFERENCE ON TANGIBLE, EMBEDDED, AND EMBODIED INTERACTION, TEI 2021, 2021,
  • [33] Explainable AI (ex-AI)
    Holzinger, Andreas
    Informatik-Spektrum, 2018, 41 (02) : 138 - 143
  • [34] Introduction to Explainable AI
    Liao, Q. Vera
    Singh, Moninder
    Zhang, Yunfeng
    Bellamy, Rachel K. E.
    EXTENDED ABSTRACTS OF THE 2021 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'21), 2021,
  • [35] Explainable AI for RAMS
    Zaman, Navid
    Apostolou, Evan
    Li, Yan
    Oister, Ken
    2022 68TH ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM (RAMS 2022), 2022,
  • [36] Introduction to Explainable AI
    Liao, Q. Vera
    Singh, Moninder
    Zhang, Yunfeng
    Bellamy, Rachel K. E.
    CHI'20: EXTENDED ABSTRACTS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, 2020,
  • [37] Chess and explainable AI
    Bjornsson, Yngvi
    ICGA JOURNAL, 2024, 46 (02) : 67 - 75
  • [38] Explaining explainable AI
    Hind, Michael
    XRDS: Crossroads, 2019, 25 (03): : 16 - 19
  • [39] Responsible AI Tutorial
    Paliwal, Dr Mukta
    Rao, Dattaraj
    Tarcar, Amogh
    PROCEEDINGS OF THE 5TH JOINT INTERNATIONAL CONFERENCE ON DATA SCIENCE & MANAGEMENT OF DATA, CODS COMAD 2022, 2022, : 339 - 341
  • [40] MAKING AI EXPLAINABLE
    Pingel J.
    New Electronics, 2022, 55 (10): : 30 - 31