GMINN: A Generative Moving Interactive Neural Network for Enhanced Short-Term Load Forecasting in Modern Electricity Markets

被引:0
|
作者
Zhan, Choujun [1 ]
Yin, Du [1 ]
Shen, Yingshan [1 ]
Hao, Tianyong [1 ]
机构
[1] South China Normal Univ, Sch Comp, Guangzhou 510631, Peoples R China
关键词
Load modeling; Predictive models; Load forecasting; Genetic algorithms; Data models; Deep learning; Electricity; Short-term load forecasting; sample convolution and interactive network; moving average filter; sample generation; genetic algorithms; machine learning; WAVELET TRANSFORM; SYSTEMS;
D O I
10.1109/TCE.2024.3367885
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Short-term load forecasting is crucial for modern electricity markets. However, it is also a challenging task due to the overfitting issue of many existing models and the influence of various factors on electricity demand, such as seasons, weather and prices. To address this problem, we propose a novel short-term load forecasting framework, named Generative and Moving Interactive Neural Networks, that integrates Mixup, Moving Average Filter, Sample Convolution and Interaction Network (SCINet) and Genetic Algorithm. Firstly, a data generation component applies Mixup to augment the training dataset, reduce the overfitting issue, and enhance model generalization. Then, a decomposition component uses MAF to decompose the load data samples into trend and residual components, each representing a more predictable underlying pattern. The decomposition also prevents data leakage from future samples. Finally, a forecasting component employs SCINet to downsample and encode the trend and residual components at multiple temporal scales, capturing both long-term and short-term dependencies. A fully connected layer then decodes the encoded features to produce the load forecast. In particular, the framework uses a Genetic Algorithm to optimize its hyper-parameters automatically, addressing the issue of parameter sensitivity in deep learning networks. We test the proposed model on four real datasets from the U.S. electricity market and compare it with eight classical machine learning models and four state-of-the-art series forecasting models. The results demonstrate that our model outperforms all the baseline models in three evaluation metrics. Specifically, in terms of mean absolute percentage error (MAPE), our model achieves an average improvement of 8.7% across the four datasets compared to the best baseline score.
引用
收藏
页码:5461 / 5470
页数:10
相关论文
共 50 条
  • [21] Artificial neural network based short-term load forecasting
    Munkhjargal, S
    Manusov, VZ
    KORUS 2004, VOL 1, PROCEEDINGS, 2004, : 262 - 264
  • [22] Short-term load forecasting based on fuzzy neural network
    DONG Liang
    MU Zhichun (Information Engineering School
    International Journal of Minerals,Metallurgy and Materials, 1997, (03) : 46 - 48
  • [23] Short-Term Load Forecasting Using Artificial Neural Network
    Buhari, Muhammad
    Adamu, Sanusi Sani
    INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, IMECS 2012, VOL I, 2012, : 83 - 88
  • [24] Short-Term Load Forecasting Using an LSTM Neural Network
    Hossain, Mohammad Safayet
    Mahmood, Hisham
    2020 IEEE POWER AND ENERGY CONFERENCE AT ILLINOIS (PECI), 2020,
  • [25] SHORT-TERM LOAD FORECASTING USING AN ARTIFICIAL NEURAL NETWORK
    LEE, KY
    CHA, YT
    PARK, JH
    KURZYN, MS
    PARK, DC
    MOHAMMED, OA
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1992, 7 (01) : 124 - 132
  • [26] SHORT-TERM LOAD FORECASTING USING AN ADAPTIVE NEURAL NETWORK
    DILLON, TS
    SESTITO, S
    LEUNG, S
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 1991, 13 (04) : 186 - 192
  • [27] The Effect of Input Length on Prediction Accuracy in Short-Term Multi-Step Electricity Load Forecasting: A CNN-LSTM Approach
    Ozdemir, Seyda
    Demir, Yakup
    Yildirim, Ozal
    IEEE ACCESS, 2025, 13 : 28419 - 28432
  • [28] A modified deep residual network for short-term load forecasting
    Kondaiah, V. Y.
    Saravanan, B.
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [29] Multi-Convolution Feature Extraction and Recurrent Neural Network Dependent Model for Short-Term Load Forecasting
    Goh, Hui Hwang
    He, Biliang
    Liu, Hui
    Zhang, Dongdong
    Dai, Wei
    Kurniawan, Tonni Agustiono
    Goh, Kai Chen
    IEEE ACCESS, 2021, 9 : 118528 - 118540
  • [30] Convolutional and recurrent neural network based model for short-term load forecasting
    Eskandari, Hosein
    Imani, Maryam
    Moghaddam, Mohsen Parsa
    ELECTRIC POWER SYSTEMS RESEARCH, 2021, 195 (195)