Markov Chain Monte Carlo Multiscan Data Association for Sets of Trajectories

被引:2
作者
Xia, Yuxuan [1 ,2 ]
Garcia-Fernandez, Angel F. [3 ,4 ]
Svensson, Lennart [5 ]
机构
[1] Zenseact AB, S-41756 Gothenburg, Sweden
[2] Linkoping Univ, Dept Elect Engn, S-58183 Linkoping, Sweden
[3] Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 3BX, England
[4] Univ Antonio de Nebrija, ARIES Res Ctr, Madrid 28248, Spain
[5] Chalmers Univ Technol, Dept Elect Engn, Gothenburg, Sweden
关键词
Trajectory; Time measurement; Estimation; Monte Carlo methods; Current measurement; Standards; Proposals; Multiple object tracking; data association; sets of trajectories; smoothing; Markov chain Monte Carlo (MCMC); MULTITARGET TRACKING; MULTIPLE; ALGORITHMS; DERIVATION; FILTERS; OBJECTS; SPACE;
D O I
10.1109/TAES.2024.3419785
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This article considers a batch solution to the multiobject tracking problem based on sets of trajectories. Specifically, we present two offline implementations of the trajectory Poisson multi-Bernoulli mixture (TPMBM) filter for batch data based on Markov chain Monte Carlo (MCMC) sampling of the data association hypotheses. In contrast to online TPMBM implementations, the proposed offline implementations solve a large-scale, multiscan data association problem across the entire time interval of interest, and therefore, they can fully exploit all the measurement information available. Furthermore, by leveraging the efficient hypothesis structure of TPMBM filters, the proposed implementations compare favorably with other MCMC-based multiobject tracking algorithms. Simulation results show that the TPMBM implementation using the Metropolis-Hastings algorithm presents state-of-the-art multiple trajectory estimation performance.
引用
收藏
页码:7804 / 7819
页数:16
相关论文
共 41 条
[11]   Multiple Target Tracking Based on Sets of Trajectories [J].
Garcia-Fernandez, Angel F. ;
Svensson, Lennart ;
Morelande, Mark R. .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2020, 56 (03) :1685-1707
[12]   Trajectory PHD and CPHD Filters [J].
Garcia-Fernandez, Angel F. ;
Svensson, Lennart .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (22) :5702-5714
[13]   Poisson Multi-Bernoulli Mixture Filter: Direct Derivation and Implementation [J].
Garcia-Fernandez, Angel F. ;
Williams, Jason L. ;
Granstrom, Karl ;
Svensson, Lennart .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2018, 54 (04) :1883-1901
[14]   Poisson Multi-Bernoulli Mixture Conjugate Prior for Multiple Extended Target Filtering [J].
Granstrom, Karl ;
Fatemi, Maryam ;
Svensson, Lennart .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2020, 56 (01) :208-225
[15]  
Granström K, 2018, 2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), P973
[16]   Uncertainty modelling and computational aspects of data association [J].
Houssineau, Jeremie ;
Zeng, Jiajie ;
Jasra, Ajay .
STATISTICS AND COMPUTING, 2021, 31 (05)
[17]   Tracking multiple objects with particle filtering [J].
Hue, C ;
Le Cadre, JP ;
Pérez, P .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2002, 38 (03) :791-812
[18]   Tracking multiple moving objects in images using Markov Chain Monte Carlo [J].
Jiang, Lan ;
Singh, Sumeetpal S. .
STATISTICS AND COMPUTING, 2018, 28 (03) :495-510
[19]   Bayesian Tracking and Parameter Learning for Non-Linear Multiple Target Tracking Models [J].
Jiang, Lan ;
Singh, Sumeetpal S. ;
Yildirim, Sinan .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (21) :5733-5745
[20]   MCMC data association and sparse factorization updating for real time multitarget tracking with merged and multiple measurements [J].
Khan, Zia ;
Balch, Tucker ;
Dellaert, Frank .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (12) :1960-1972