Markov Chain Monte Carlo Multiscan Data Association for Sets of Trajectories

被引:2
作者
Xia, Yuxuan [1 ,2 ]
Garcia-Fernandez, Angel F. [3 ,4 ]
Svensson, Lennart [5 ]
机构
[1] Zenseact AB, S-41756 Gothenburg, Sweden
[2] Linkoping Univ, Dept Elect Engn, S-58183 Linkoping, Sweden
[3] Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 3BX, England
[4] Univ Antonio de Nebrija, ARIES Res Ctr, Madrid 28248, Spain
[5] Chalmers Univ Technol, Dept Elect Engn, Gothenburg, Sweden
关键词
Trajectory; Time measurement; Estimation; Monte Carlo methods; Current measurement; Standards; Proposals; Multiple object tracking; data association; sets of trajectories; smoothing; Markov chain Monte Carlo (MCMC); MULTITARGET TRACKING; MULTIPLE; ALGORITHMS; DERIVATION; FILTERS; OBJECTS; SPACE;
D O I
10.1109/TAES.2024.3419785
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This article considers a batch solution to the multiobject tracking problem based on sets of trajectories. Specifically, we present two offline implementations of the trajectory Poisson multi-Bernoulli mixture (TPMBM) filter for batch data based on Markov chain Monte Carlo (MCMC) sampling of the data association hypotheses. In contrast to online TPMBM implementations, the proposed offline implementations solve a large-scale, multiscan data association problem across the entire time interval of interest, and therefore, they can fully exploit all the measurement information available. Furthermore, by leveraging the efficient hypothesis structure of TPMBM filters, the proposed implementations compare favorably with other MCMC-based multiobject tracking algorithms. Simulation results show that the TPMBM implementation using the Metropolis-Hastings algorithm presents state-of-the-art multiple trajectory estimation performance.
引用
收藏
页码:7804 / 7819
页数:16
相关论文
共 41 条
[1]   A Low Computational Complexity JPDA Filter With Superposition [J].
Angle, R. Blair ;
Streit, Roy L. ;
Efe, Murat .
IEEE SIGNAL PROCESSING LETTERS, 2021, 28 :1031-1035
[2]  
BISHOP C. M., 2006, PATTERN RECOGN
[3]  
Challa S., 2011, Fundamentals of Object Tracking
[4]  
Crcciun P., 2015, Ph.D. dissertation
[5]  
Dubois D, 2015, SPRINGER HANDBOOK OF COMPUTATIONAL INTELLIGENCE, P31
[6]   Trajectory Poisson Multi-Bernoulli Mixture Filter for Traffic Monitoring Using a Drone [J].
Garcia-Fernandez, Angel F. ;
Xiao, Jimin .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (01) :402-413
[7]   Tracking Multiple Spawning Targets Using Poisson Multi-Bernoulli Mixtures on Sets of Tree Trajectories [J].
Garcia-Fernandez, Angel F. ;
Svensson, Lennart .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 :1987-1999
[8]   Continuous-Discrete Multiple Target Tracking With Out-of-Sequence Measurements [J].
Garcia-Fernandez, Angel F. ;
Yi, Wei .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 :4699-4709
[9]   Trajectory Poisson Multi-Bernoulli Filters [J].
Garcia-Fernandez, Angel F. ;
Svensson, Lennart ;
Williams, Jason L. ;
Xia, Yuxuan ;
Granstrom, Karl .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 :4933-4945
[10]   A Metric on the Space of Finite Sets of Trajectories for Evaluation of Multi-Target Tracking Algorithms [J].
Garcia-Fernandez, Angel F. ;
Rahmathullah, Abu Sajana ;
Svensson, Lennart .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 :3917-3928