Generation of digital soil mapping for Coimbatore districts using multinomial logistic regression approach

被引:0
作者
Shankar, S. Vishnu [1 ]
Kumaraperumal, R. [1 ]
Radha, M. [1 ]
Kannan, Balaji [1 ]
Patil, S. G. [1 ]
Vanitha, G. [1 ]
Raj, M. Nivas [1 ]
Athira, M. [1 ]
Ananthakrishnan, S. [2 ]
机构
[1] Tamil Nadu Agr Univ, Coimbatore, India
[2] ICAR Natl Rice Res Inst, Cuttack, India
关键词
Digital soil mapping; Multinomial logistic regression; Principal component analysis; Kappa statistics; CLASSIFICATION; ACCURACY; EROSION;
D O I
10.1007/s12665-024-11985-5
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Digital soil mapping (DSM) is a significant advancement in soil mapping systems, enabling efficient mapping of soil patterns across different temporal and spatial scales. This computer-assisted method surpasses the traditional soil mapping techniques in terms of both compatibility and accuracy. This study employed multinomial logistic regression to map the soil subgroup levels in the Coimbatore district. Primary sample points and Natural Resource Information System (NRIS) database points serve as the dependent variables, while significant covariate layers act as independent variables. The accuracy assessment showed an overall mapping accuracy of 52.58%, with a kappa statistic of 0.50. Additionally, the calculated disagreement measures, including quantity and allocation disagreements, were 21.50% and 25.92%, respectively. The approach provides spatial soil maps at 30 m resolution and was extended for the Coimbatore district of Tamil Nadu, considering the lack of organized high resolution soil maps for operational use. The area statistics calculated from the digital soil map showed that the soil orders Vertisols cover the largest area, accounting for approximately 25.97% (122,630.38 ha) of the total land area. Soil subgroups like Ultic Haplustalfs and Vertic Ustorthents occupy substantial portions of the land, accounting for 9.95% and 9.62% of the total area, respectively. The total land area classified by the map accounts for 427,432.10 ha, i.e., 90.53% of the total land area, of which 44,696.46 ha (9.467%) remains unclassified. The study also presents the statistics on soil order at the block level. These findings provide valuable insights into soil classification, offering a comprehensive understanding of soil distribution and characteristics that support effective decision-making for sustainable land management and agricultural practices.
引用
收藏
页数:15
相关论文
共 65 条
[1]   Digital soil mapping at pilot sites in the northwest coast of Egypt: A multinomial logistic regression approach [J].
Abdel-Kader, Fawzy Hassan .
EGYPTIAN JOURNAL OF REMOTE SENSING AND SPACE SCIENCES, 2011, 14 (01) :29-40
[2]   A Systematic Review on Digital Soil Mapping Approaches in Lowland Areas [J].
Adeniyi, Odunayo David ;
Bature, Hauwa ;
Mearker, Michael .
LAND, 2024, 13 (03)
[3]   Determination of Important Topographic Factors for Landslide Mapping Analysis Using MLP Network [J].
Alkhasawneh, Mutasem Sh. ;
Ngah, Umi Kalthum ;
Tay, Lea Tien ;
Isa, Nor Ashidi Mat ;
Al-batah, Mohammad Subhi .
SCIENTIFIC WORLD JOURNAL, 2013,
[4]  
Boehner J, 2008, Terrain Parameters described in the SAGA-GIS Software, v. 2.1. 0
[5]   The effect of covariates on Soil Organic Matter and pH variability: a digital soil mapping approach using random forest model [J].
Bouslihim, Yassine ;
John, Kingsley ;
Miftah, Abdelhalim ;
Azmi, Rida ;
Aboutayeb, Rachid ;
Bouasria, Abdelkrim ;
Razouk, Rachid ;
Hssaini, Lahcen .
ANNALS OF GIS, 2024, 30 (02) :215-232
[6]   Utilization of constructed wetland technology in China's sponge city scheme under carbon neutral vision [J].
Cai, Yamei ;
Zhao, Yaqian ;
Wei, Ting ;
Fu, Wei ;
Tang, Cheng ;
Yuan, Yujie ;
Yin, Qi ;
Wang, Cong .
JOURNAL OF WATER PROCESS ENGINEERING, 2023, 53
[7]  
Cogle AL, 2002, SOIL USE MANAGE, V18, P10, DOI [10.1079/SUM200194, 10.1079/SUM2002094]
[8]   A REVIEW OF ASSESSING THE ACCURACY OF CLASSIFICATIONS OF REMOTELY SENSED DATA [J].
CONGALTON, RG .
REMOTE SENSING OF ENVIRONMENT, 1991, 37 (01) :35-46
[9]   System for Automated Geoscientific Analyses (SAGA) v. 2.1.4 [J].
Conrad, O. ;
Bechtel, B. ;
Bock, M. ;
Dietrich, H. ;
Fischer, E. ;
Gerlitz, L. ;
Wehberg, J. ;
Wichmann, V. ;
Boehner, J. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2015, 8 (07) :1991-2007
[10]  
Conrad O, 2012, SAGA GIS MODULE LIB