The Hydrogen-Bond Continuum in the Salt/Cocrystal Systems of Quinoline and Chloro-Nitrobenzoic Acids

被引:3
作者
Stocek, Jakub Radek [1 ,2 ]
Blahut, Jan [1 ]
Chalupna, Simona [3 ]
Cejka, Jan [3 ]
Stepanova, Sille [1 ]
Kasicka, Vaclav [1 ]
Husak, Michal [3 ]
Dracinsky, Martin [1 ]
机构
[1] Czech Acad Sci, Inst Organ Chem & Biochem, Flemingovo Nam 2, Prague 6, Czech Republic
[2] Charles Univ Prague, Fac Sci, Dept Organ Chem, Prague 2, Czech Republic
[3] Univ Chem & Technol, Dept Solid State Chem, Tech 5, Prague 6, Czech Republic
关键词
X-ray diffraction; NMR spectroscopy; Molecular dynamics; Nuclear quantum effects; Solids; SALT-COCRYSTAL CONTINUUM; SOLID-STATE NMR; PHARMACEUTICAL COCRYSTALS; TEMPERATURE-DEPENDENCE; CRYSTAL-STRUCTURES; PARAMETERS; ACCURATE; REFINEMENT; COMPLEXES;
D O I
10.1002/chem.202402946
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study investigates the hydrogen-bond geometry in six two-component solid systems composed of quinoline and chloro-nitrobenzoic acids. New X-ray diffraction studies were conducted using both the conventional independent-atom model and the more recent Hirshfeld atom-refinement method, with the latter providing precise hydrogen-atom positions. The systems can be divided into salts (the hydrogen atom transferred to the quinoline nitrogen), cocrystals (the hydrogen atom retained by the acid), and intermediate structures. Solid-state NMR experiments corroborated the X-ray diffraction-derived H-N distances. DFT calculations, using five functionals including hybrid B3LYP and PBE0, showed varying energy profiles for the hydrogen bonds, with notable differences across functionals. These calculations revealed different preferences for salt or cocrystal structures, depending on the functional used. Path-integral molecular dynamics simulations incorporating nuclear quantum effects demonstrated significant hydrogen-atom delocalization, forming a hydrogen-bond continuum, and provided average N-H distances in excellent agreement with experimental results. This comprehensive experimental and theoretical approach highlights the complexity of multicomponent solids. The study emphasizes that the classification into salts or cocrystals is frequently inadequate, as the hydrogen atom is often significantly delocalized in the hydrogen bond. This insight is crucial for understanding and predicting the behavior of such systems in pharmaceutical applications. Hydrogen-bond continuum in six two-component solid systems is investigated using a complex experimental and computational methodology consisting of X-ray diffraction experiments with Hirshfeld atom-refinement, solid-state NMR spectroscopy and DFT calculations. Path-integral molecular dynamics simulations incorporating nuclear quantum effects demonstrated significant hydrogen-atom delocalization and provided average N-H distances in excellent agreement with experimental results. image
引用
收藏
页数:11
相关论文
共 72 条
  • [21] Acid-base crystalline complexes and the pKa rule
    Cruz-Cabeza, Aurora J.
    [J]. CRYSTENGCOMM, 2012, 14 (20): : 6362 - 6365
  • [22] Temperature Dependence of NMR Parameters Calculated from Path Integral Molecular Dynamics Simulations
    Dracinsky, Martin
    Bour, Petr
    Hodgkinson, Paul
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2016, 12 (03) : 968 - 973
  • [23] Effects of Quantum Nuclear Delocalisation on NMR Parameters from Path Integral Molecular Dynamics
    Dracinsky, Martin
    Hodgkinson, Paul
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2014, 20 (08) : 2201 - 2207
  • [24] Pharmaceutical Cocrystals: Formulation Approaches to Develop Robust Drug Products
    Duggirala, Naga Kiran
    LaCasse, Shawn M.
    Zaworotko, Michael J.
    Krzyzaniak, Joseph F.
    Arora, Kapildev K.
    [J]. CRYSTAL GROWTH & DESIGN, 2020, 20 (02) : 617 - 626
  • [25] European Medicines Agency, 2015, EMACHMPCVMPQWP284008
  • [26] Food and Drug Administration U.S. Department of Health and Human Services, 2018, Regulatory Classification of Pharmaceutical Co-Crystals: Guidance for Industry
  • [27] Accurate and Numerically Efficient r2SCAN Meta-Generalized Gradient Approximation
    Furness, James W.
    Kaplan, Aaron D.
    Ning, Jinliang
    Perdew, John P.
    Sun, Jianwei
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (19) : 8208 - 8215
  • [28] 2-Chloro-4-nitrobenzoic acid-quinoline (1/1)
    Gotoh, Kazuma
    Ishida, Hiroyuki
    [J]. ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE, 2011, 67 : O2883 - +
  • [29] Hydrogen-bonded structures of the isomeric compounds of quinoline with 2-chloro-5-nitrobenzoic acid, 3-chloro-2-nitrobenzoic acid, 4-chloro-2-nitrobenzoic acid and 5-chloro-2-nitrobenzoic acid
    Gotoh, Kazuma
    Ishida, Hiroyuki
    [J]. ACTA CRYSTALLOGRAPHICA SECTION C-CRYSTAL STRUCTURE COMMUNICATIONS, 2009, 65 : O534 - O538
  • [30] The Cambridge Structural Database
    Groom, Colin R.
    Bruno, Ian J.
    Lightfoot, Matthew P.
    Ward, Suzanna C.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS, 2016, 72 : 171 - 179