Control of Surface Plasmon Propagation and Terahertz Near-Field Waveforms in a Scanning Tunneling Microscope

被引:0
作者
Sheng, Shaoxiang [1 ,2 ]
Chen, Li [3 ,4 ]
Schust, Johannes [1 ]
Lichtenberg, Kurt [1 ]
Abdo, Mohamad [1 ]
Huber, Felix [1 ]
Baumann, Susanne [1 ]
Loth, Sebastian [1 ,2 ]
机构
[1] Univ Stuttgart, Inst Funct Matter & Quantum Technol, D-70569 Stuttgart, Germany
[2] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany
[3] Univ Calif San Diego, Program Mat Sci & Engn, La Jolla, CA 92093 USA
[4] Henan Acad Sci, Inst Light Resources & Environm Sci, Zhengzhou 450046, Peoples R China
基金
欧洲研究理事会;
关键词
THz waveform; surface plasmons; scanning tunnelingmicroscopy; time-domain spectroscopy; atomic-scaledynamics; SINGLE-MOLECULE; WATER-VAPOR; PULSES; MOTION;
D O I
10.1021/acs.nanolett.4c04152
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Coupling subcycle THz pulses to a scanning tunneling microscope (STM) enables ultrafast spectroscopy at the atomic scale. This technique critically depends on the shape of the THz near-field waveform in the tunnel junction. We characterize the THz electric field waveform in the STM junction by electro-optic sampling of tip-scattered THz light (s-EOS) and pulse correlation using the THz-induced current. Combined with full-wave simulations, we identify THz spectral distortions and reflections arising from THz surface plasmon propagation along the tip wire and cavity modes at the tip apex. By optimizing the tip shape, tip holder geometry and materials, we achieve a drastically flattened THz near-field waveform. This optimization ensures point-like coupling to the far-field and, thus, allows precise Gouy phase control at the STM tip. The improved THz waveforms facilitate atomically-resolved THz time-domain spectroscopy in the STM with high dynamic range for investigating local electron and phonon dynamics on surfaces.
引用
收藏
页码:15291 / 15299
页数:9
相关论文
共 45 条
[1]   Variable Repetition Rate THz Source for Ultrafast Scanning Tunneling Microscopy [J].
Abdo, Mohamad ;
Sheng, Shaoxiang ;
Rolf-Pissarczyk, Steffen ;
Arnhold, Lukas ;
Burgess, Jacob A. J. ;
Isobe, Masahiko ;
Malavolti, Luigi ;
Loth, Sebastian .
ACS PHOTONICS, 2021, 8 (03) :702-708
[2]   Efficient and Continuous Carrier-Envelope Phase Control for Terahertz Lightwave-Driven Scanning Probe Microscopy [J].
Allerbeck, Jonas ;
Kuttruff, Joel ;
Bobzien, Laric ;
Huberich, Lysander ;
Tsarev, Maxim ;
Schuler, Bruno .
ACS PHOTONICS, 2023, 10 (11) :3888-3895
[3]   Lightwave-driven scanning tunnelling spectroscopy of atomically precise graphene nanoribbons [J].
Ammerman, S. E. ;
Jelic, V ;
Wei, Y. ;
Breslin, V. N. ;
Hassan, M. ;
Everett, N. ;
Lee, S. ;
Sun, Q. ;
Pignedoli, C. A. ;
Ruffieux, P. ;
Fasel, R. ;
Cocker, T. L. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[4]  
Arashida Y, 2022, ACS PHOTONICS, V9, P3156, DOI 10.1021/acsphotonics.2c00995
[5]   Experimental and theoretical study of free induction decay of water molecules induced by terahertz laser pulses [J].
Babilotte, Philippe ;
Coudert, Laurent H. ;
Billard, Franck ;
Hertz, Edouard ;
Faucher, Olivier ;
Lavorel, Bruno .
PHYSICAL REVIEW A, 2017, 95 (04)
[6]   Recent progress in probing atomic and molecular quantum coherence with scanning tunneling microscopy [J].
Bi, Liya ;
Liang, Kangkai ;
Czap, Gregory ;
Wang, Hao ;
Yang, Kai ;
Li, Shaowei .
PROGRESS IN SURFACE SCIENCE, 2023, 98 (01)
[7]   Nanoscale terahertz scanning probe microscopy [J].
Cocker, T. L. ;
Jelic, V. ;
Hillenbrand, R. ;
Hegmann, F. A. .
NATURE PHOTONICS, 2021, 15 (08) :558-569
[8]   Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging [J].
Cocker, Tyler L. ;
Peller, Dominik ;
Yu, Ping ;
Repp, Jascha ;
Huber, Rupert .
NATURE, 2016, 539 (7628) :263-+
[9]  
Cocker TL, 2013, NAT PHOTONICS, V7, P620, DOI [10.1038/nphoton.2013.151, 10.1038/NPHOTON.2013.151]
[10]   Temperature-Dependent Refractive Index of Quartz at Terahertz Frequencies [J].
Davies, Christopher L. ;
Patel, Jay B. ;
Xia, Chelsea Q. ;
Herz, Laura M. ;
Johnston, Michael B. .
JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2018, 39 (12) :1236-1248