Kernelized Offset-Free Data-Driven Predictive Control for Nonlinear Systems

被引:0
作者
de Jong, Thomas [1 ]
Lazar, Mircea [1 ]
机构
[1] Eindhoven Univ Technol, Dept Elect Engn, NL-5612 AZ Eindhoven, Netherlands
来源
IEEE CONTROL SYSTEMS LETTERS | 2024年 / 8卷
关键词
Kernel; Predictive control; Predictive models; State-space methods; Mathematical models; Analytical models; Hilbert space; Data models; Computational modeling; Stability criteria; Data-driven predictive control; nonlinear systems; kernel methods; recursive feasibility; stability;
D O I
10.1109/LCSYS.2024.3517458
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This letter presents a kernelized offset-free data-driven predictive control scheme for nonlinear systems. Traditional model-based and data-driven predictive controllers often struggle with inaccurate predictors or persistent disturbances, especially in the case of nonlinear dynamics, leading to tracking offsets and stability issues. To overcome these limitations, we employ kernel methods to parameterize the nonlinear terms of a velocity model, preserving its structure and efficiently learning unknown parameters through a least squares approach. This results in a offset-free data-driven predictive control scheme formulated as a nonlinear program, but solvable via sequential quadratic programming. We provide a framework for analyzing recursive feasibility and stability of the developed method and we demonstrate its effectiveness through simulations on a nonlinear benchmark example.
引用
收藏
页码:2877 / 2882
页数:6
相关论文
共 19 条
[1]  
Cisneros P. S. G., 2021, Quasi-linear model predictive control: Stability, modelling and implementation, DOI [10.15480/882.3574, DOI 10.15480/882.3574]
[2]   Data-Driven quasi-LPV Model Predictive Control Using Koopman Operator Techniques [J].
Cisneros, Pablo S. G. ;
Datar, Adwait ;
Goettsch, Patrick ;
Werner, Herbert .
IFAC PAPERSONLINE, 2020, 53 (02) :6062-6068
[3]  
Coulson J, 2019, 2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), P307, DOI [10.23919/ECC.2019.8795639, 10.23919/ecc.2019.8795639]
[4]  
de Jong T, 2024, Arxiv, DOI arXiv:2405.01292
[5]  
Fasshauer GE, 2011, DOLOMIT RES NOTES AP, V4, P21
[6]  
Favoreel W., 1999, Proceedings of the 14th World Congress. International Federation of Automatic Control, P235
[7]   Learning controllers from data via kernel-based interpolation [J].
Hu, Zhongjie ;
De Persis, Claudio ;
Tesi, Pietro .
2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, :8509-8514
[8]   Robust and Kernelized Data-Enabled Predictive Control for Nonlinear Systems [J].
Huang, Linbin ;
Lygeros, John ;
Dorfler, Florian .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2024, 32 (02) :611-624
[9]   Basis-functions nonlinear data-enabled predictive control: Consistent and computationally efficient formulations [J].
Lazar, M. .
2024 EUROPEAN CONTROL CONFERENCE, ECC 2024, 2024, :888-893
[10]   Offset-free data-driven predictive control [J].
Lazar, M. ;
Verheijen, P. C. N. .
2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, :1099-1104