Studies of laser-plasma interaction physics with low-density targets for direct-drive inertial confinement schemes

被引:0
|
作者
VTikhonchuk [1 ,2 ]
YJGu [1 ,3 ]
OKlimo [1 ,4 ]
JLimpouch [4 ]
SWeber [1 ]
机构
[1] ELI-Beamlines, Institute of Physics, Academy of Sciences of the Czech Republic
[2] Centre Lasers Intenses et Applications, University of Bordeaux–CNRS–CEA
[3] Institute of Plasma Physics of the CAS
[4] FNSPE, Czech Technical University in
关键词
D O I
暂无
中图分类号
TL632 [惯性约束装置]; TL612 [];
学科分类号
摘要
Comprehensive understanding and possible control of parametric instabilities in the context of inertial confinement fusion(ICF) remains a challenging task. The details of the absorption processes and the detrimental effects of hot electrons on the implosion process require as much effort on the experimental side as on the theoretical and simulation side. This paper describes a proposal for experimental studies on nonlinear interaction of intense laser pulses with a high-temperature plasma under conditions corresponding to direct-drive ICF schemes. We propose to develop a platform for laser-plasma interaction studies based on foam targets. Parametric instabilities are sensitive to the bulk plasma temperature and the density scale length. Foam targets are sufficiently flexible to allow control of these parameters. However, investigations conducted on small laser facilities cannot be extrapolated in a reliable way to real fusion conditions. It is therefore necessary to perform experiments at a multi-kilojoule energy level on medium-scale facilities such as OMEGA or SG-III. An example of two-plasmon decay instability excited in the interaction of two laser beams is considered.
引用
收藏
页码:35 / 42
页数:8
相关论文
共 50 条
  • [21] Demonstration of a hydrodynamically equivalent burning plasma in direct-drive inertial confinement fusion
    Gopalaswamy, V.
    Williams, C. A.
    Betti, R.
    Patel, D.
    Knauer, J. P.
    Lees, A.
    Cao, D.
    Campbell, E. M.
    Farmakis, P.
    Ejaz, R.
    Anderson, K. S.
    Epstein, R.
    Carroll-Nellenbeck, J.
    Igumenshchev, I. V.
    Marozas, J. A.
    Radha, P. B.
    Solodov, A. A.
    Thomas, C. A.
    Woo, K. M.
    Collins, T. J. B.
    Hu, S. X.
    Scullin, W.
    Turnbull, D.
    Goncharov, V. N.
    Churnetski, K.
    Forrest, C. J.
    Glebov, V. Yu.
    Heuer, P. V.
    Mcclow, H.
    Shah, R. C.
    Stoeckl, C.
    Theobald, W.
    Edgell, D. H.
    Ivancic, S.
    Rosenberg, M. J.
    Regan, S. P.
    Bredesen, D.
    Fella, C.
    Koch, M.
    Janezic, R. T.
    Bonino, M. J.
    Harding, D. R.
    Bauer, K. A.
    Sampat, S.
    Waxer, L. J.
    Labuzeta, M.
    Morse, S. F. B.
    Gatu-Johnson, M.
    Petrasso, R. D.
    Frenje, J. A.
    NATURE PHYSICS, 2024, 20 (05) : 751 - 757
  • [22] Effect of the laser wavelength: A long story of laser-plasma interaction physics for Inertial Confinement Fusion Teller Medal Lecture
    Labaune, Christine
    IFSA 2011 - SEVENTH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS, 2013, 59
  • [23] Direct ignition of inertial fusion targets by a laser-plasma ion stream
    Gus'kov, SY
    QUANTUM ELECTRONICS, 2001, 31 (10) : 885 - 890
  • [24] Studies on laser-plasma interaction physics for shock ignition
    Maheut, Y.
    Batani, D.
    Nicolai, Ph.
    Antonelli, L.
    Krousky, E.
    RADIATION EFFECTS AND DEFECTS IN SOLIDS, 2015, 170 (04): : 325 - 336
  • [25] Studies of plastic-ablator compressibility for direct-drive inertial confinement fusion on OMEGA
    Hu, S. X.
    Smalyuk, V. A.
    Goncharov, V. N.
    Knauer, J. P.
    Radha, P. B.
    Igumenshchev, I. V.
    Marozas, J. A.
    Stoeckl, C.
    Yaakobi, B.
    Shvarts, D.
    Sangster, T. C.
    McKenty, P. W.
    Meyerhofer, D. D.
    Skupsky, S.
    Mccrory, R. L.
    PHYSICAL REVIEW LETTERS, 2008, 100 (18)
  • [26] Modeling of stimulated Brillouin scattering near the critical-density surface in the plasmas of direct-drive inertial confinement fusion targets
    Maximov, AV
    Myatt, J
    Seka, W
    Short, RW
    Craxton, RS
    PHYSICS OF PLASMAS, 2004, 11 (06) : 2994 - 3000
  • [27] A transport simulation code for inertial confinement fusion relevant laser-plasma interaction
    Weber, S
    Maire, PH
    Loubère, R
    Riazuelo, G
    Michel, P
    Tikhonchuk, V
    Ovadia, J
    COMPUTER PHYSICS COMMUNICATIONS, 2005, 168 (03) : 141 - 158
  • [28] Improved modeling of the solid-to-plasma transition of polystyrene ablator for laser direct-drive inertial confinement fusion hydrocodes
    Pineau, A.
    Chimier, B.
    Hu, S. X.
    Duchateau, G.
    PHYSICAL REVIEW E, 2021, 104 (01)
  • [29] CHARACTERIZATION OF DENSITY AND METAL CONTENT IN LOW-DENSITY FOAM TARGETS FOR INERTIAL CONFINEMENT FUSION
    ELLIOTT, NE
    MITCHELL, MA
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1995, 362 (01): : 112 - 113
  • [30] A review of laser-plasma interaction physics of indirect-drive fusion
    Kirkwood, R. K.
    Moody, J. D.
    Kline, J.
    Dewald, E.
    Glenzer, S.
    Divol, L.
    Michel, P.
    Hinkel, D.
    Berger, R.
    Williams, E.
    Milovich, J.
    Yin, L.
    Rose, H.
    MacGowan, B.
    Landen, O.
    Rosen, M.
    Lindl, J.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2013, 55 (10)