Formation mechanism of MnS inclusion during heat treatments and its influence on the pitting behavior of 316L stainless steel fabricated by laser powder bed fusion

被引:0
|
作者
Zhiwei Duan
Cheng Man
Hongzhi Cui
Zhongyu Cui
Xin Wang
机构
[1] SchoolofMaterialsScienceandEngineering,OceanUniversityofChina
关键词
D O I
暂无
中图分类号
TG142.71 [不锈钢、耐酸钢]; TG665 [光能加工设备及其加工]; TG156 [热处理工艺];
学科分类号
摘要
The formation mechanism of MnS inclusions during heat treatment and its effect on the pitting behavior of laser powder bed fusion(L-PBF)-fabricated 316L stainless steel(SS) were investigated. MnS inclusions precipitated at the grain boundaries of the samples, and the spherical oxide particles can become nucleation sites. The quantity and size of the MnS inclusions increased with prolonged heating. Compared with the as-received sample, the pitting of heat-treated L-PBF-fabricated 316L SS samples was mainly induced by the newly generated MnS inclusions rather than the fabricated gas pores and extended along the grain boundaries; this caused the dramatic pitting resistance deterioration.
引用
收藏
页码:12 / 22
页数:11
相关论文
共 50 条
  • [21] Orientation effect of electropolishing characteristics of 316L stainless steel fabricated by laser powder bed fusion
    Han, Wei
    Fang, Fengzhou
    FRONTIERS OF MECHANICAL ENGINEERING, 2021, 16 (03) : 580 - 592
  • [22] Orientation effect of electropolishing characteristics of 316L stainless steel fabricated by laser powder bed fusion
    Wei Han
    Fengzhou Fang
    Frontiers of Mechanical Engineering, 2021, 16 : 580 - 592
  • [23] An investigation on the oxidation behavior of spatters generated during the laser powder bed fusion of 316L stainless steel
    Lu, Chao
    Zhang, Ruihua
    Wei, Xiaohong
    Xiao, Mengzhi
    Yin, Yan
    Qu, Yuebo
    Li, Hui
    Liu, Pengyu
    Qiu, Xiaopan
    Guo, Tieming
    APPLIED SURFACE SCIENCE, 2022, 586
  • [24] Hydrogen Trapping in Laser Powder Bed Fusion 316L Stainless Steel
    Metalnikov, Polina
    Ben-Hamu, Guy
    Eliezer, Dan
    METALS, 2022, 12 (10)
  • [25] Influence of laser power on mechanical properties and pitting corrosion behavior of additively manufactured 316L stainless steel by laser powder bed fusion (L-PBF)
    Zhang, Ao
    Wu, Wangping
    Wu, Meng
    Liu, Yaxuan
    Zhang, Yi
    Wang, Qinqin
    OPTICS AND LASER TECHNOLOGY, 2024, 176
  • [26] Pore healing effect of laser polishing and its influence on fatigue properties of 316L stainless steel parts fabricated by laser powder bed fusion
    Panov, Daniil
    Oreshkin, Oleg
    Voloskov, Boris
    Petrovskiy, Victor
    Shishkovsky, Igor
    OPTICS AND LASER TECHNOLOGY, 2022, 156
  • [27] Spall damage mechanisms in laser powder bed fabricated stainless steel 316L
    Koube, K. D.
    Kennedy, G.
    Bertsch, K.
    Kacher, J.
    Thoma, D. J.
    Thadhani, N. N.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 851
  • [28] Influence of compound field-assisted on the mechanical properties of 316L stainless steel fabricated by laser powder bed fusion
    Guo, Shuai
    Tang, Rongji
    Guo, Anfu
    Sui, Shang
    Sheng, Xianliang
    Yang, Wenlu
    Qu, Peng
    Wang, Shaoqing
    Zhao, Xiaolin
    Ni, Junjie
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 30 : 672 - 684
  • [29] Influence of powder recycling on 316L stainless steel feedstocks and printed parts in laser powder bed fusion
    Delacroix, Timothee
    Lomello, Fernando
    Schuster, Frederic
    Maskrot, Hicham
    Garandet, Jean-Paul
    ADDITIVE MANUFACTURING, 2022, 50
  • [30] Effect of laser polishing on the microstructure and mechanical properties of stainless steel 316L fabricated by laser powder bed fusion
    Chen, Lan
    Richter, Brodan
    Zhang, Xinzhou
    Bertsch, Kaila B.
    Thoma, Dan J.
    Pfefferkorn, Frank E.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 802