Guarding art galleries by guarding witnesses (extended abstract)

被引:0
作者
Chwa, Kyung-Yong [1 ]
Jo, Byung-Cheol [2 ]
Knauer, Christian [3 ]
Moet, Esther [4 ]
Van Oostrum, René [4 ]
Shin, Chan-Su [5 ]
机构
[1] Department of Computer Science, KAIST, Daejon
[2] Taff System, Co. Ltd, Seoul
[3] Freie Universität Berlin, D-14195 Berlin
[4] Institute of Information and Computing Sciences, Utrecht University, 3508 TB Utrecht
[5] School of Electronics and Information Engineering, Hankuk University of Foreign Studies, Yongin
来源
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | 2004年 / 3341卷
关键词
D O I
10.1007/978-3-540-30551-4_32
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Let P be a simple polygon. We define a witness set W to be a set of points such that if any (prospective) guard set G guards W, then it is guaranteed that G guards P. Not all polygons admit a finite witness set. If a finite minimal witness set exists, then it cannot contain any witness in the interior of P; all witnesses must lie on the boundary of P, and there can be at most one witness in the interior of every edge. We give an algorithm to compute a minimum witness set for P in O(n2log n) time, if such a set exists, or to report the non-existence within the same time bounds. © Springer-Verlag 2004.
引用
收藏
页码:352 / 363
页数:11
相关论文
共 12 条
[1]  
Chvaal V., A combinatorial theorem in plane geometry, J. Combin. Theory Ser. B, 18, pp. 39-41, (1975)
[2]  
O'Rourke J., Art Gallery Theorems and Algorithms, The International Series of Monographs on Computer Science, (1987)
[3]  
Shermer T.C., Recent results in art galleries, Proc. IEEE, 80, pp. 1384-1399, (1992)
[4]  
Urrutia J., Art gallery and illumination problems. Sack, J.R., Urrutia, J., eds, Handbook of Computational Geometry, pp. 973-1027, (2000)
[5]  
Cheong O., Van Oostrum R., The visibility region of points in a simple polygon, Proc. 11th Canad. Comf. Comp. Geom., pp. 87-90, (1999)
[6]  
Gewali L., Meng A., Mitchell J.S.B., Ntafos S., Path planning in 0/1/∞ weighted regions with applications, ORSA J. Comput., 2, pp. 253-272, (1990)
[7]  
Yang T.C., Shin C.S., Guard sufficiency set for polygons, Journal of Korean Information Science and Technology, 28, pp. 73-79, (2001)
[8]  
Chwa K.Y., Jo B.C., Knauer C., Moet E., Van Oostrum R., Shin C.S., Guarding Art Galleries by Guarding Witnesses, (2003)
[9]  
Bentley J.L., Ottmann T.A., Algorithms for reporting and counting geometric intersections, IEEE Trans. Comput., C-28, pp. 643-647, (1979)
[10]  
Joe B., Simpson R.B., Correction to Lee's visibility polygon algorithm, BIT, 27, pp. 458-473, (1987)