Reduction of chemical networks. I. The case of molecular clouds

被引:0
|
作者
Wiebe, D. [1 ]
Semenov, D. [2 ]
Henning, Th. [3 ]
机构
[1] Institute of Astronomy of the RAS, Pyatnitskaya St. 48, 119017 Moscow, Russia
[2] Astrophysical Institute, University Observatory, Schillergäßchen 2-3, 07745 Jena, Germany
[3] Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany
来源
Astronomy and Astrophysics | 1600年 / 399卷 / 01期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
26
引用
收藏
页码:197 / 210
相关论文
共 50 条
  • [1] Reduction of chemical networks - I. The case of molecular clouds
    Wiebe, D
    Semenov, D
    Henning, T
    ASTRONOMY & ASTROPHYSICS, 2003, 399 (01) : 197 - 210
  • [2] Clustering in complex networks.: I.: General formalism
    Serrano, M. Angeles
    Boguna, Marian
    PHYSICAL REVIEW E, 2006, 74 (05)
  • [3] Intrinsic dynamics in neuronal networks. I. Theory
    Latham, PE
    Richmond, BJ
    Nelson, PG
    Nirenberg, S
    JOURNAL OF NEUROPHYSIOLOGY, 2000, 83 (02) : 808 - 827
  • [4] Thermoreversible associating polymer networks. I. Interplay of thermodynamics, chemical kinetics, and polymer physics
    Hoy, Robert S.
    Fredrickson, Glenn H.
    JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (22):
  • [5] Irreversible thermodynamics of open chemical networks. I. Emergent cycles and broken conservation laws
    Polettini, Matteo
    Esposito, Massimiliano
    JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (02):
  • [6] A UNIFIED MONTE CARLO TREATMENT OF GAS-GRAIN CHEMISTRY FOR LARGE REACTION NETWORKS. I. TESTING VALIDITY OF RATE EQUATIONS IN MOLECULAR CLOUDS
    Vasyunin, A. I.
    Semenov, D. A.
    Wiebe, D. S.
    Henning, Th.
    ASTROPHYSICAL JOURNAL, 2009, 691 (02): : 1459 - 1469
  • [7] Geometry of river networks. I. Scaling, fluctuations, and deviations
    Dodds, PS
    Rothman, DH
    PHYSICAL REVIEW E, 2001, 63 (01):
  • [8] Gradient-constrained minimum networks. I. Fundamentals
    M. Brazil
    J.H. Rubinstein
    D.A. Thomas
    J.F. Weng
    N.C. Wormald
    Journal of Global Optimization, 2001, 21 : 139 - 155
  • [9] Gradient-constrained minimum networks. I. Fundamentals
    Brazil, M
    Rubinstein, JH
    Thomas, DA
    Weng, JF
    Wormald, NC
    JOURNAL OF GLOBAL OPTIMIZATION, 2001, 21 (02) : 139 - 155
  • [10] Molecular networks.
    Hosseini, MW
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1999, 217 : U1048 - U1048