ON THE NONLINEAR DEFORMATION GEOMETRY OF EULER-BERNOULLI BEAMS.

被引:0
|
作者
Hodges, Dewey H.
Ormiston, Robert A.
Peters, David A.
机构
来源
NASA Technical Paper | 1980年 / 1566期
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
BEAMS AND GIRDERS
引用
收藏
相关论文
共 50 条
  • [1] Passivity analysis of Nonlinear Euler-Bernoulli beams
    Fard, MP
    MODELING IDENTIFICATION AND CONTROL, 2002, 23 (04) : 239 - 258
  • [2] Analytical Approximation of Nonlinear Vibration of Euler-Bernoulli Beams
    Jafari, S. S.
    Rashidi, M. M.
    Johnson, S.
    LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2016, 13 (07): : 1250 - 1264
  • [3] An Analytical Study of Nonlinear Vibrations of Buckled Euler-Bernoulli Beams
    Pakar, I.
    Bayat, M.
    ACTA PHYSICA POLONICA A, 2013, 123 (01) : 48 - 52
  • [4] A large deformation geometric nonlinear Euler-Bernoulli beam element
    Gu, Y.-Q. (guyaqi@gdupc.cn), 1600, Tsinghua University (30):
  • [5] Spectrum of a network of Euler-Bernoulli beams
    Mercier, D.
    Regnier, V.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (01) : 174 - 196
  • [6] Control of a network of Euler-Bernoulli beams
    Mercier, D.
    Regnier, V.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (02) : 874 - 894
  • [7] A family of isospectral Euler-Bernoulli beams
    Gladwell, Graham M. L.
    Morassi, Antonino
    INVERSE PROBLEMS, 2010, 26 (03)
  • [8] A deformation field for Euler-Bernoulli beams with applications to flexible multibody dynamics
    Shi, P
    McPhee, J
    Heppler, GR
    MULTIBODY SYSTEM DYNAMICS, 2001, 5 (01) : 79 - 104
  • [9] Exact solutions of Euler-Bernoulli beams
    Haider, Jamil Abbas
    Zaman, F. D.
    Lone, Showkat Ahmad
    Anwar, Sadia
    Almutlak, Salmeh A.
    Elseesy, Ibrahim E.
    MODERN PHYSICS LETTERS B, 2023, 37 (33):
  • [10] A new nonlinear fractal vibration of the Euler-Bernoulli beams in a microgravity space
    Zhang, Pei-Ling
    Wang, Kang-Jia
    JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2023, 42 (01) : 222 - 230