Dynamical crossover in the clock model with a conserved order parameter

被引:0
作者
Puri, Sanjay
Ahluwalia, Rajeev
Bray, Alan J.
机构
来源
Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics | 1997年 / 55卷 / 3-A期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Evolution of fractal particles in systems with conserved order parameter
    Kalinin, SV
    Gorbachev, DL
    Tomashevitch, KV
    Borisevich, AY
    Vertegel, AA
    Markworth, AJ
    Tretyakov, YD
    [J]. MULTISCALE MODELLING OF MATERIALS, 1999, 538 : 151 - 156
  • [22] Evolution of fractal particles in systems with conserved order parameter
    Kalinin, SV
    Gorbachev, DL
    Borisevich, AY
    Tomashevitch, KV
    Vertegel, AA
    Markworth, AJ
    Tretyakov, YD
    [J]. PHYSICAL REVIEW E, 2000, 61 (02): : 1189 - 1194
  • [23] Evolution of fractal particles in systems with conserved order parameter
    Kalinin, S.V.
    Gorbachev, D.L.
    Yu Borisevich, A.
    Tomashevitch, K.V.
    Vertegel, A.A.
    Markworth, A.J.
    Tretyakov, Yu D.
    [J]. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2000, 61 (02): : 1189 - 1194
  • [24] Measuring a dynamical topological order parameter in quantum walks
    Xu, Xiao-Ye
    Wang, Qin-Qin
    Heyl, Markus
    Budich, Jan Carl
    Pan, Wei-Wei
    Chen, Zhe
    Jan, Munsif
    Sun, Kai
    Xu, Jin-Shi
    Han, Yong-Jian
    Li, Chuan-Feng
    Guo, Guang-Can
    [J]. LIGHT-SCIENCE & APPLICATIONS, 2020, 9 (01)
  • [25] Relaxation of the order-parameter statistics and dynamical confinement
    Tortora, Riccardo Javier Valencia
    Calabrese, Pasquale
    Collura, Mario
    [J]. EPL, 2020, 132 (05)
  • [26] Measuring a dynamical topological order parameter in quantum walks
    Xiao-Ye Xu
    Qin-Qin Wang
    Markus Heyl
    Jan Carl Budich
    Wei-Wei Pan
    Zhe Chen
    Munsif Jan
    Kai Sun
    Jin-Shi Xu
    Yong-Jian Han
    Chuan-Feng Li
    Guang-Can Guo
    [J]. Light: Science & Applications, 9
  • [27] Dynamical quantum phase transition without an order parameter
    Kuliashov, O. N.
    Markov, A. A.
    Rubtsow, A. N.
    [J]. PHYSICAL REVIEW B, 2023, 107 (09)
  • [28] Dynamical theory of icosahedral order parameter in supercooled liquids
    Kawasaki, K
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1997, 246 (1-2) : 64 - 74
  • [29] Numerical treatment of the dynamics of a conserved order parameter in the presence of walls
    Fukuda, Jun-ichi
    Yoneya, Makoto
    Yokoyama, Hiroshi
    [J]. PHYSICAL REVIEW E, 2006, 73 (06):
  • [30] GROWTH-KINETICS FOR A SYSTEM WITH A CONSERVED ORDER-PARAMETER
    MAZENKO, GF
    [J]. PHYSICAL REVIEW E, 1994, 50 (05): : 3485 - 3501