Optical properties of β″-(ET)2SF5CH2CF2SO3: a novel superconductor with large discrete counterions

被引:0
|
作者
Dong, J. [1 ]
Musfeldt, J.L. [1 ]
Schlueter, J.A. [2 ]
Williams, J.M. [2 ]
Gard, G.L. [3 ]
机构
[1] Department of Chemistry, SUNY-Binghamton, Binghamton, NY 13902, United States
[2] Chem. and Mat. Science Division, Argonne National Laboratory, Argonne, IL 60439, United States
[3] Department of Chemistry, Portland State University, Portland, OR 97207, United States
来源
Synthetic Metals | 1999年 / 103卷 / 1 -3 pt 3期
基金
美国国家科学基金会;
关键词
Electronic structure - Ground state - Infrared spectroscopy - Light polarization - Light reflection - Optical properties - Superconductivity - Temperature control - Thermal effects;
D O I
暂无
中图分类号
学科分类号
摘要
The optical spectra of the organic superconductor β″-(ET)2SF5CH2CF2SO3 are measured over a wide spectral range (30-35000 cm-1) as a function of temperature and polarization. The optical anisotropy is quite large compared with other ET-based organic superconductors, and the spectra are far from Drude-like over the full temperature range. A broad electronic band centered near 1000 cm-1 is observed at low temperature along the a axis, prior to the superconducting transition. The changes of vibrational features near 120 K are attributed to a weak reorientation of the counterion, which may affect hydrogen bonding in the material.
引用
收藏
页码:1892 / 1893
相关论文
共 50 条
  • [1] Optical properties of β"-(ET)2SF5CH2CF2SO3:: A novel superconductor with large discrete counterions
    Dong, J
    Musfeldt, JL
    Schlueter, JA
    Williams, JM
    Gard, GL
    SYNTHETIC METALS, 1999, 103 (1-3) : 1892 - 1893
  • [2] Optical properties of β"-(ET)2SF5CH2CF2SO3:: A layered molecular superconductor with large discrete counterions
    Dong, J
    Musfeldt, JL
    Schlueter, JA
    Williams, JM
    Nixon, PG
    Winter, RW
    Gard, GL
    PHYSICAL REVIEW B, 1999, 60 (06): : 4342 - 4350
  • [3] Fermiology of the organic superconductor β"-(ET)2SF5CH2CF2SO3
    Wosnitza, J
    Wanka, S
    Qualls, JS
    Brooks, JS
    Mielke, CH
    Harrison, N
    Schlueter, JA
    Williams, JM
    Nixon, PG
    Winter, RW
    Gard, GL
    SYNTHETIC METALS, 1999, 103 (1-3) : 2000 - 2001
  • [4] Pressure dependence of the electronic properties of the quasi-two-dimensional organic superconductor β"-(ET)2SF5CH2CF2SO3
    Hagel, J.
    Ignatchik, O.
    Wosnitza, J.
    Pfleiderer, C.
    Schlueter, J. A.
    Davis, H.
    Winter, R.
    Gard, G. L.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2007, 460 : 639 - 640
  • [5] 1/f noise in the quasi-two-dimensional organic superconductor β"-(ET)2SF5CH2CF2SO3
    Mueller, Jens
    Brandenburg, Jens
    Schlueter, John A.
    Gard, Gary L.
    INTERNATIONAL CONFERENCE ON MAGNETISM (ICM 2009), 2010, 200
  • [6] Anisotropic magnetoresistance in the organic superconductor β"-(BEDT-TTF)2SF5CH2CF2SO3
    Su, X
    Zuo, F
    Schlueter, JA
    Williams, JM
    Nixon, PG
    Winter, RW
    Gard, GL
    PHYSICAL REVIEW B, 1999, 59 (06) : 4376 - 4381
  • [7] Pressure-dependent magnetoresistance studies of β"-(ET)2SF5CH2CF2SO3
    Hagel, J
    Wosnitza, J
    Pfleiderer, C
    Schlueter, JA
    Geiser, U
    Mohtasham, J
    Winter, RW
    Gard, GL
    SYNTHETIC METALS, 2003, 137 (1-3) : 1267 - 1268
  • [8] Specific heat and critical fields of the organic superconductor β"-(BEDT-TTF)2SF5CH2CF2SO3
    Wanka, S
    Hagel, J
    Beckmann, D
    Wosnitza, J
    Schlueter, JA
    Williams, JM
    Nixon, PG
    Winter, RW
    Gard, GL
    PHYSICAL REVIEW B, 1998, 57 (05): : 3084 - 3088
  • [9] β′′-(ET)2SF5CH2CF2SO3 – a Layered 2D Metal with Vanishing Interlayer Coupling
    J. Wosnitza
    J. Hagel
    O. Ignatchik
    B. Bergk
    V. M. Gvozdikov
    J. A. Schlueter
    R. W. Winter
    G. L. Gard
    Journal of Low Temperature Physics, 2006, 142 (3-4) : 331 - 336
  • [10] β″-(ET)2SF5CH2CF2SO3 — a layered 2D metal with vanishing interlayer coupling
    J. Wosnitza
    J. Hagel
    O. Ignatchik
    B. Bergk
    V. M. Gvozdikov
    J. A. Schlueter
    R. W. Winter
    G. L. Gard
    Journal of Low Temperature Physics, 2006, 142 : 327 - 332