共 13 条
[1]
Seung H.S., Lee D.D., The manifold ways of perception, Science, 290, 5500, pp. 2268-2269, (2000)
[2]
Donoho D.L., Grimes C., Hessian Eigenmaps: New locally linear embedding techniques for high-dimensional data, Proc. of the National Academy of Sciences of the United States of American, 100, 10, pp. 5591-5596, (2003)
[3]
Tenenbaum J., Silva V.D., Langford J., A global geometric framework for nonlinear dimensionality reduction, Science, 290, 5500, pp. 2319-2323, (2000)
[4]
Roweis S., Saul L., Nonlinear dimensionality reduction by locally linear embedding, Science, 290, 5500, pp. 2323-2326, (2000)
[5]
Belkin M., Niyogi P., Laplacian Eigenmaps for dimensionality reduction and data representation, Neural Computation, 15, 6, pp. 1373-1396, (2003)
[6]
Min W.L., Lu L., He X.F., Locality pursuit embedding, Pattern Recognition, 37, 4, pp. 781-788, (2004)
[7]
Zhang Z.Y., Zha H.Y., Principal manifolds and nonlinear dimensionality reduction via tangent space alignment, SIAM Journal of Scientific Computing, 26, 1, pp. 313-338, (2004)
[8]
Kambhatla N., Leen T.K., Dimension reduction by local principal component analysis, Neural Computation, 9, 7, pp. 1493-1516, (1997)
[9]
Pelleg D., Moore A., X-means: Extending K-means with efficient estimation of the number of clusters, Proc. of the 17th Int'l Conf. on Machine Learning, pp. 727-734, (2000)
[10]
Chen W.H., An Introduction to Differentiable Manifold, (2001)