A Family of Symplectic Integrators: Stability, Accuracy, and Molecular Dynamics Applications

被引:0
作者
机构
来源
SIAM J Sci Comput | / 1卷 / 203期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
[31]   Common Molecular Dynamics Algorithms Revisited: Accuracy and Optimal Time Steps of Stoermer-Leapfrog Integrators [J].
Mazur, A. K. .
Journal of Computational Physics, 136 (02)
[32]   Preservation of stability properties near fixed points of linear Hamiltonian systems by symplectic integrators [J].
Ding, Xiaohua ;
Liu, Hongyu ;
Shang, Zaijiu ;
Sun, Geng .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (13) :6105-6114
[33]   Explicit symplectic integrators of molecular dynamics algorithms for rigid-body molecules in the canonical, isobaric-isothermal, and related ensembles [J].
Okumura, Hisashi ;
Itoh, Satoru G. ;
Okamoto, Yuko .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (08)
[34]   A symplectic integrator for molecular dynamics on a hypersphere [J].
Caillol, J-M .
CONDENSED MATTER PHYSICS, 2020, 23 (02) :1-15
[35]   On the Accuracy of a Family of Adaptive Symplectic Conservative Methods for the Kepler Problem [J].
Elenin G.G. ;
Elenina T.G. ;
Ivanov A.A. .
Mathematical Models and Computer Simulations, 2021, 13 (5) :853-860
[36]   Exponential integrators for quantum-classical molecular dynamics [J].
Hochbruck, M ;
Lubich, C .
BIT, 1999, 39 (04) :620-645
[37]   A common, avoidable source of error in molecular dynamics integrators [J].
Lippert, Ross A. ;
Bowers, Kevin J. ;
Dror, Ron O. ;
Eastwood, Michael P. ;
Gregersen, Brent A. ;
Klepeis, John L. ;
Kolossvary, Istvan ;
Shaw, David E. .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (04)
[38]   Reversible integrators for basic extended system molecular dynamics [J].
Sergi, A ;
Ferrario, M ;
Costa, D .
MOLECULAR PHYSICS, 1999, 97 (07) :825-832
[39]   Low-Storage Time Integrators with Improved Accuracy and Stability Properties [J].
Ketcheson, David I. .
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 :1782-1782
[40]   Exponential Integrators for Quantum-Classical Molecular Dynamics [J].
Marlis Hochbruck ;
Christian Lubich .
BIT Numerical Mathematics, 1999, 39 :620-645