Optimized perturbation method for the propagation in the anharmonic oscillator potential

被引:0
作者
Institute of Physics, Bialystok University, Lipowa 41, 15-424 Bialystok, Poland [1 ]
机构
来源
Phys Lett Sect A Gen At Solid State Phys | / 4卷 / 259-264期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
[31]   Convergent perturbation theory for a q-deformed anharmonic oscillator [J].
Dick, R ;
Pollok-Narayanan, A ;
Steinacker, H ;
Wess, J .
EUROPEAN PHYSICAL JOURNAL C, 1999, 7 (02) :363-368
[32]   Multiple-scale perturbation theory of sextic anharmonic oscillator [J].
Cheng, YF ;
Dai, TQ .
HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS-CHINESE EDITION, 2006, 30 (06) :513-516
[33]   A tractable example of perturbation theory with a field cutoff: the anharmonic oscillator [J].
Li, L ;
Meurice, Y .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (37) :8139-8153
[34]   Convergent perturbation theory for a q-deformed anharmonic oscillator [J].
Dick R. ;
Pollok-Narayanan A. ;
Steinacker H. ;
Wess J. .
The European Physical Journal C - Particles and Fields, 1999, 7 (2) :363-368
[35]   Application of the Frobenius method to the Schrodinger equation for a spherically symmetric potential: an anharmonic oscillator [J].
Koscik, P ;
Okopinska, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (35) :7743-7755
[36]   ANHARMONIC-OSCILLATOR WITH GENERAL POLYNOMIAL POTENTIAL [J].
SHARMA, GS ;
SHARMA, LK .
JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (10) :2947-2952
[37]   SOLUTION OF THE ANHARMONIC QUARTIC POTENTIAL OSCILLATOR PROBLEM [J].
SANCHEZ, AM ;
BEJARANO, JD ;
MARZAL, DC .
JOURNAL OF SOUND AND VIBRATION, 1993, 161 (01) :19-31
[38]   SUMMATION OF THE PERTURBATION GRAPHS BY MEANS OF THE LEGENDRE TRANSFORM IN A SCALAR PARAMETER AND APPLICATION OF THE METHOD TO THE ANHARMONIC-OSCILLATOR [J].
ANANIKYAN, NS ;
BALAYAN, GL ;
SAVVIDI, GK .
SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1983, 37 (06) :935-938
[39]   PERTURBATION-THEORY FOR THE TRIPLE-WELL ANHARMONIC-OSCILLATOR [J].
DAMBURG, RJ ;
PROPIN, RK ;
RYABYKH, YI .
PHYSICAL REVIEW A, 1990, 41 (03) :1218-1224
[40]   Giant second-order optical nonlinearities in anharmonic-oscillator potential wells: Perturbation theory calculations [J].
Wang, Guanghui ;
Guo, Qi ;
Wu, Lijun ;
Yang, Xiangbo .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 39 (01) :75-84