Optimized perturbation method for the propagation in the anharmonic oscillator potential

被引:0
作者
Institute of Physics, Bialystok University, Lipowa 41, 15-424 Bialystok, Poland [1 ]
机构
来源
Phys Lett Sect A Gen At Solid State Phys | / 4卷 / 259-264期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
[21]   Perturbation WKB approximation: Quartic anharmonic oscillator [J].
Lu, SC ;
Chen, Y ;
Sun, F ;
Wang, B .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1998, 113 (03) :375-384
[22]   New perturbation theory for the nonstationary anharmonic oscillator [J].
Bogdanov, AV ;
Gevorkyan, AS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (21) :7413-7425
[23]   VARIATIONAL PERTURBATION-THEORY - ANHARMONIC-OSCILLATOR [J].
SISSAKIAN, AN ;
SOLOVTSOV, IL .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1992, 54 (02) :263-271
[24]   SUMMATION METHODS FOR PERTURBATION SERIES OF GENERALIZED ANHARMONIC OSCILLATOR [J].
GRAFFI, S ;
GRECCHI, V ;
TURCHETT.G .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B, 1971, B 4 (02) :313-&
[25]   Perfect lattice perturbation theory: A study of the anharmonic oscillator [J].
Bietenholz, W ;
Struckmann, T .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1999, 10 (04) :531-553
[26]   SCALING PROPERTY OF VARIATIONAL PERTURBATION EXPANSION FOR A GENERAL ANHARMONIC-OSCILLATOR WITH X(P)-POTENTIAL [J].
JANKE, W ;
KLEINERT, H .
PHYSICS LETTERS A, 1995, 199 (5-6) :287-290
[27]   PERTURBATION-THEORY AND HYPERVIRIAL THEOREMS FOR THE ANHARMONIC-OSCILLATOR [J].
DMITRIEVA, IK ;
PLINDOV, GI .
PHYSICS LETTERS A, 1980, 79 (01) :47-50
[28]   PERTURBATION-THEORY OF THE ANHARMONIC-OSCILLATOR AT LARGE ORDERS [J].
AUBERSON, G ;
MENNESSIER, G ;
MAHOUX, G .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1978, 48 (01) :1-23
[29]   Transformation of the asymptotic perturbation expansion for the anharmonic oscillator into a convergent expansion [J].
Ivanov, IA .
PHYSICS LETTERS A, 2004, 322 (3-4) :194-204
[30]   Multiple-scale perturbation theory of generalized anharmonic oscillator [J].
Cheng Yan-Fu ;
Dai Tong-Qing .
HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS-CHINESE EDITION, 2006, 30 (10) :944-949