Powers of staircase Schur functions and symmetric analogues of Bessel polynomials
被引:0
|
作者:
Institut Gaspard Monge, Univ. de Marne-la-Vallee, 2 rue de la Butte-Verte, 93160 Noisy-le-Grand Cedex, France
论文数: 0引用数: 0
h-index: 0
Institut Gaspard Monge, Univ. de Marne-la-Vallee, 2 rue de la Butte-Verte, 93160 Noisy-le-Grand Cedex, France
[1
]
机构:
来源:
Discrete Math
|
/
1-3卷
/
213-227期
关键词:
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We present several identities involving staircase Schur functions. These identities are then interpreted in terms of a sequence of orthogonal polynomials in one variable x, with coefficients in the ring of symmetric functions. By an appropriate specialization these polynomials reduce to Bessel polynomials. This leads to a new determinantal expression for Bessel polynomials and suggests that their combinatorics might be linked to Young tableaux or shifted Young tableaux.