Nonlinear supersymmetric σ model for scalar classical waves

被引:0
作者
Elattari, B.
Kagalovsky, V.
Weidenmuller, H.A.
机构
来源
Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics | 1998年 / 57卷 / 3-A期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
[41]   Dynamics of breathers and rogue waves in scalar and multicomponent nonlinear systems [J].
Wang, Weiying ;
Wang, Xiubin .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2022, 74 (04)
[42]   Scalar and vector electromagnetic solitary waves in nonlinear hyperbolic media [J].
Kirane, M. ;
Stalin, S. .
CHAOS SOLITONS & FRACTALS, 2024, 179
[43]   Nonlinear gravitational waves in Horndeski gravity: scalar pulse and memories [J].
Ben Achour, Jibril ;
Gorji, Mohammad Ali ;
Roussille, Hugo .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2024, (05)
[44]   Versatile rogue waves in scalar, vector, and multidimensional nonlinear systems [J].
Chen, Shihua ;
Baronio, Fabio ;
Soto-Crespo, Jose M. ;
Grelu, Philippe ;
Mihalache, Dumitru .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (46)
[45]   Dynamics of breathers and rogue waves in scalar and multicomponent nonlinear systems [J].
Weiying Wang ;
Xiubin Wang .
CommunicationsinTheoreticalPhysics, 2022, 74 (04) :5-16
[46]   Classical Euclidean Wormhole Solution and Wave Function for a Nonlinear Scalar Field [J].
H. Q. Lu ;
L. M. Shen ;
P. Ji ;
G. F. Ji ;
N. J. Sun .
International Journal of Theoretical Physics, 2003, 42 :837-844
[47]   Classical Euclidean wormhole solution and wave function for a nonlinear scalar field [J].
Lu, HQ ;
Shen, LM ;
Ji, P ;
Ji, GF ;
Sun, NJ .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2003, 42 (04) :837-844
[48]   DYNAMICS OF COSMOLOGICAL MODELS WITH NONLINEAR CLASSICAL PHANTOM SCALAR FIELDS. I. FORMULATION OF THE MATHEMATICAL MODEL [J].
Ignat'ev, Yu. G. ;
Arathonov, A. A. .
RUSSIAN PHYSICS JOURNAL, 2019, 61 (10) :1827-1837
[49]   Dynamics of Cosmological Models with Nonlinear Classical Phantom Scalar Fields. I. Formulation of the Mathematical Model [J].
Yu. G. Ignat’ev ;
A. A. Arathonov .
Russian Physics Journal, 2019, 61 :1827-1837
[50]   A PROBLEM IN THE CLASSICAL THEORY OF WATER WAVES: WEAKLY NONLINEAR WAVES IN THE PRESENCE OF VORTICITY [J].
Johnson, Robin Stanley .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2012, 19 :137-160