Algorithm for geometric minimum spanning trees requiring nearly linear expected time

被引:0
|
作者
机构
[1] Clarkson, Kenneth L.
来源
Clarkson, Kenneth L. | 1600年 / 04期
关键词
Mathematical Techniques;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] A fast distributed approximation algorithm for minimum spanning trees
    Khan, Maleq
    Pandurangan, Gopal
    DISTRIBUTED COMPUTING, 2008, 20 (06) : 391 - 402
  • [32] EREW PRAM algorithm for updating minimum spanning trees
    Das, Sajal K.
    Ferragina, Paolo
    Parallel Processing Letters, 1999, 9 (01): : 111 - 122
  • [33] A simple algorithm for computing minimum spanning trees in the Internet
    AbdelWahab, H
    Stoica, I
    Sultan, F
    Wilson, K
    INFORMATION SCIENCES, 1997, 101 (1-2) : 47 - 69
  • [34] A PARALLEL ALGORITHM FOR COMPUTING MINIMUM SPANNING-TREES
    JOHNSON, DB
    METAXAS, P
    JOURNAL OF ALGORITHMS, 1995, 19 (03) : 383 - 401
  • [35] Geometric Median in Nearly Linear Time
    Cohen, Michael B.
    Lee, Yin Tat
    Miller, Gary
    Pachocki, Jakub
    Sidford, Aaron
    STOC'16: PROCEEDINGS OF THE 48TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2016, : 9 - 21
  • [36] A distributed approximation algorithm for the minimum degree minimum weight spanning trees
    Lavault, Christian
    Valencia-Pabon, Mario
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2008, 68 (02) : 200 - 208
  • [37] The expected complexity of Prim's minimum spanning tree algorithm
    Martel, C
    INFORMATION PROCESSING LETTERS, 2002, 81 (04) : 197 - 201
  • [38] Minimum spanning trees of random geometric graphs with location dependent weights
    Ganesan, Ghurumuruhan
    BERNOULLI, 2021, 27 (04) : 2473 - 2493
  • [39] Expected Lengths of Minimum Spanning Trees for Non-identical Edge Distributions
    Li, Wenbo V.
    Zhang, Xinyi
    ELECTRONIC JOURNAL OF PROBABILITY, 2010, 15 : 110 - 141
  • [40] A Linear Time Algorithm for the Minimum Spanning Caterpillar Problem for Bounded Treewidth Graphs
    Dinneen, Michael J.
    Khosravani, Masoud
    STRUCTURAL INFORMATION AND COMMUNICATION COMPLEXITY, PROCEEDINGS, 2010, 6058 : 237 - 246