Algorithm for geometric minimum spanning trees requiring nearly linear expected time

被引:0
|
作者
机构
[1] Clarkson, Kenneth L.
来源
Clarkson, Kenneth L. | 1600年 / 04期
关键词
Mathematical Techniques;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] AN ALGORITHM FOR GEOMETRIC MINIMUM SPANNING-TREES REQUIRING NEARLY LINEAR EXPECTED TIME
    CLARKSON, KL
    ALGORITHMICA, 1989, 4 (04) : 461 - 469
  • [2] Randomized linear-time algorithm to find minimum spanning trees
    Stanford Univ, Stanford, United States
    J Assoc Comput Mach, 2 (321-328):
  • [3] A RANDOMIZED LINEAR-TIME ALGORITHM TO FIND MINIMUM SPANNING-TREES
    KARGER, DR
    KLEIN, PN
    TARJAN, RE
    JOURNAL OF THE ASSOCIATION FOR COMPUTING MACHINERY, 1995, 42 (02): : 321 - 328
  • [4] An Even Simpler Linear-Time Algorithm for Verifying Minimum Spanning Trees
    Hagerup, Torben
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2010, 5911 : 178 - 189
  • [5] Geometric Minimum Spanning Trees with GEOFILTERKRUSKAL
    Chatterjee, Samidh
    Connor, Michael
    Kumar, Piyush
    EXPERIMENTAL ALGORITHMS, PROCEEDINGS, 2010, 6049 : 486 - 500
  • [6] On the Difference of Expected Lengths of Minimum Spanning Trees
    Li, Wenbo V.
    Zhang, Xinyi
    COMBINATORICS PROBABILITY & COMPUTING, 2009, 18 (03): : 423 - 434
  • [7] A linear-time optimal-message distributed algorithm for minimum spanning trees
    Michalis Faloutsos
    Mart Molle
    Distributed Computing, 2004, 17 : 151 - 170
  • [8] A linear-time optimal-message distributed algorithm for minimum spanning trees
    Faloutsos, M
    Molle, M
    DISTRIBUTED COMPUTING, 2004, 17 (02) : 151 - 170
  • [9] Optimal layout of hexagonal minimum spanning trees in linear time
    Lin, GH
    Xue, GL
    ISCAS 2000: IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - PROCEEDINGS, VOL IV: EMERGING TECHNOLOGIES FOR THE 21ST CENTURY, 2000, : 633 - 636
  • [10] TRANSITIONS IN GEOMETRIC MINIMUM SPANNING-TREES
    MONMA, C
    SURI, S
    DISCRETE & COMPUTATIONAL GEOMETRY, 1992, 8 (03) : 265 - 293