A parallel Lanczos method for symmetric generalized eigenvalue problems

被引:1
作者
Wu, Kesheng [1 ]
Simon, Horst [1 ]
机构
[1] Lawrence Berkeley National Laboratory, NERSC, Berkeley, CA 94720, United States
来源
Computing and Visualization in Science | 1999年 / 2卷 / 01期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:37 / 46
相关论文
共 50 条
[22]   LANCZOS METHOD FOR SOLVING LARGE STRUCTURAL EIGENVALUE PROBLEMS [J].
GERADIN, M .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1979, 59 (05) :T127-T129
[23]   Continuous methods for symmetric generalized eigenvalue problems [J].
Gao, Xing-Bao ;
Golub, Gene H. ;
Liao, Li-Zhi .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (2-3) :676-696
[24]   An algorithm for symmetric generalized inverse eigenvalue problems [J].
Dai, H .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 296 (1-3) :79-98
[26]   A new restarting method in the Lanczos algorithm for generalized eigenvalue problem [J].
Najafi, H. Saberi ;
Refahi, A. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 184 (02) :421-428
[27]   A parallel generalized conjugate gradient method for large scale eigenvalue problems [J].
Li, Yu ;
Xie, Hehu ;
Xu, Ran ;
You, Chun'guang ;
Zhang, Ning .
CCF TRANSACTIONS ON HIGH PERFORMANCE COMPUTING, 2020, 2 (02) :111-122
[28]   A parallel generalized conjugate gradient method for large scale eigenvalue problems [J].
Yu Li ;
Hehu Xie ;
Ran Xu ;
Chun’guang You ;
Ning Zhang .
CCF Transactions on High Performance Computing, 2020, 2 :111-122
[29]   Aspects of programming the Lanczos method for generalized symmetric matrices [J].
Ikramov, KD ;
Kushnereva, DA .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1995, 35 (12) :1527-1530
[30]   Global convergence of the restarted Lanczos and Jacobi–Davidson methods for symmetric eigenvalue problems [J].
Kensuke Aishima .
Numerische Mathematik, 2015, 131 :405-423