Continuous microscopy of ceramic materials with atomic force microscopy

被引:0
|
作者
Baretzky, Brigitte [1 ]
Reinsch, Bernd [1 ]
Taeffner, Ulrike [1 ]
Schneider, Gerhard [1 ]
Ruehle, Manfred [1 ]
机构
[1] Max-Planck-Inst fuer Metallforschung, Stuttgart, Germany
关键词
Alumina - Atomic force microscopy - Characterization - Crystal microstructure - Electron microscopy - Optical microscopy - Polycrystalline materials - Silicon carbide - Surface structure - Synthesis (chemical) - Transmission electron microscopy - Zirconia;
D O I
暂无
中图分类号
学科分类号
摘要
Atomic force microscopy (AFM) is established as a powerful tool for the study of surfaces in materials science. AFM principally offers the possibility to image the surface structure in real space continuously from macroscopic scale down to atomic resolution. The aim of this paper is to demonstrate the ability of AFM for the microstructural characterisation of ceramic materials. Therefore, AFM has been applied for a wide range of magnification (1,000 to 100,000x). We have investigated polycrystalline alumina, yttria-doped zirconia and SiC-doped alumina ceramics as well as a single crystal of yttria-stabilised zirconia. Thereby, a specific ceramographic sample preparation produces characteristic nano-scaled surface structures, which are visualised by AFM. The results are compared with those of conventional microscopic methods, such as optical, scanning electron, high-resolution field emission scanning and transmission electron microscopy. Even for small relief heights of a few nanometres being present in etched samples. AFM renders an excellent image contrast due to high resolution in vertical direction. Consequently, AFM is a valuable method for microstructural characterisation of ceramic materials spanning the whole magnification and resolution range from optical to transmission electron microscopy.
引用
收藏
页码:332 / 340
相关论文
共 50 条
  • [41] Metallographic study of construction materials with atomic force microscopy method
    A. M. Dobrotvorskii
    E. I. Maslikova
    E. P. Shevyakova
    P. G. Ul’yanov
    D. Yu. Usachev
    B. V. Senkovskiy
    V. K. Adamchuk
    S. V. Pushko
    A. A. Mal’tsev
    K. S. Balizh
    Inorganic Materials, 2014, 50 : 1487 - 1494
  • [42] Atomic Force Microscopy on Biological Materials Related to Pathological Conditions
    Stylianou, Andreas
    Kontomaris, Stylianos-Vasileios
    Grant, Colin
    Alexandratou, Eleni
    SCANNING, 2019,
  • [43] Contact stiffness of layered materials for ultrasonic atomic force microscopy
    Yaralioglu, GG
    Degertekin, FL
    Crozier, KB
    Quate, CF
    JOURNAL OF APPLIED PHYSICS, 2000, 87 (10) : 7491 - 7496
  • [44] Atomic-force microscopy in structural studies of materials composition
    Vstovskij, G.V.
    Solov'eva, A.B.
    Kedrina, N.F.
    Timofeeva, V.A.
    Kalinin, Yu.K.
    Rozhkova, N.N.
    Zhurnal Fizicheskoj Khimii, 2001, 75 (11): : 1963 - 1968
  • [45] The Application of Atomic Force Microscopy to the Characterization of Industrial Polymer Materials
    Georg K. Barand
    Gregory F. Meyers
    MRS Bulletin, 2004, 29 : 464 - 470
  • [46] High-speed atomic force microscopy for materials science
    Payton, O. D.
    Picco, L.
    Scott, T. B.
    INTERNATIONAL MATERIALS REVIEWS, 2016, 61 (08) : 473 - 494
  • [47] Application of atomic force microscopy in bitumen materials at the nanoscale: A review
    Xing, Chengwei
    Jiang, Wei
    Li, Mingchen
    Wang, Ming
    Xiao, Jingjing
    Xu, Zhoucong
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 342
  • [48] PROBING THE SURFACE FORCES OF MATERIALS USING ATOMIC FORCE MICROSCOPY
    COLTON, RJ
    BURNHAM, NA
    GANS, BI
    POLLOCK, HM
    HARRISON, JA
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1991, 202 : 154 - PHYS
  • [49] Studies of probe tip materials by atomic force microscopy: a review
    Xu, Ke
    Liu, Yuzhe
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2022, 13 : 1256 - 1267
  • [50] Metallographic study of construction materials with atomic force microscopy method
    Dobrotvorskii, A. M.
    Maslikova, E. I.
    Shevyakova, E. P.
    Ul'yanov, P. G.
    Usachev, D. Yu.
    Senkovskiy, B. V.
    Adamchuk, V. K.
    Pushko, S. V.
    Mal'tsev, A. A.
    Balizh, K. S.
    INORGANIC MATERIALS, 2014, 50 (15) : 1487 - 1494