Turbulent boundary layers were altered with a tandem array of manipulators arranged to produce a maximum drag reduction. The Reynolds number based on the momentum thickness, Reθ, at the first manipulator position was between 1700 and 2400. Temperature was used as a passive contaminant to explore the dynamical relationship between the near-wall and outer regions of the manipulated layer. Heat was introduced by warming the wall uniformly to 15°C above the ambient temperature or with a line heater in the wake of the manipulator. Temperature and velocity measurements showed a reduction in fluctuation amplitude and a strong decrease in larger scale mixing accompanied by a reduction of the Taylor microscale and integral lengthscale. Isocorrelations indicated that the eddy size was decreased in all three directions. The net result of the manipulators was a marked decrease in the entrainment of irrotational fluid into the boundary layer.
机构:
Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA