ASYMPTOTIC EQUIVALENCE OF FOKKER-PLANCK AND DIFFUSION SOLUTIONS FOR LARGE TIME.

被引:0
作者
Ganapol, B.D. [1 ]
Larsen, Edward W. [1 ]
机构
[1] Univ of Arizona, Dep of Nuclear, & Energy Engineering, Tucson,, AZ, USA, Univ of Arizona, Dep of Nuclear & Energy Engineering, Tucson, AZ, USA
来源
Transport Theory and Statistical Physics | 1984年 / 13卷 / 05期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
DIFFUSION
引用
收藏
页码:635 / 641
相关论文
共 50 条
[41]   On solutions of fractional nonlinear Fokker-Planck equation [J].
Singla, Komal ;
Leonenko, Nikolai .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2025, 28 (03) :1094-1105
[42]   ON THE FOKKER-PLANCK EQUATION WITH TIME-DEPENDENT DRIFT AND DIFFUSION-COEFFICIENTS AND ITS EXPONENTIAL SOLUTIONS [J].
OWEDYK, J ;
KOCISZEWSKI, A .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1985, 59 (01) :69-74
[43]   ASYMPTOTIC-BEHAVIOR OF SOLUTIONS OF FOKKER-PLANCK EQUATIONS UNDER T-]INFINITY [J].
KHARRASOV, MK .
DOKLADY AKADEMII NAUK, 1992, 325 (02) :280-283
[44]   Similarity solutions of the Fokker-Planck equation with time-dependent coefficients [J].
Lin, W-T ;
Ho, C-L .
ANNALS OF PHYSICS, 2012, 327 (02) :386-397
[45]   Large lattice fractional Fokker-Planck equation [J].
Tarasov, Vasily E. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
[46]   THE TIME-LOCAL FOKKER-PLANCK EQUATION [J].
RODGER, PM ;
SCEATS, MG .
JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (04) :2526-2535
[47]   TIME AVERAGES FOR KINETIC FOKKER-PLANCK EQUATIONS [J].
Brigati, Giovanni .
KINETIC AND RELATED MODELS, 2022, :524-539
[48]   The precise time-dependent solution of the Fokker-Planck equation with anomalous diffusion [J].
Guo Ran ;
Du Jiulin .
ANNALS OF PHYSICS, 2015, 359 :187-197
[49]   Comment on Fractional Fokker-Planck Equation with Space and Time Dependent Drift and Diffusion [J].
Magdziarz, Marcin ;
Gajda, Janusz ;
Zorawik, Tomasz .
JOURNAL OF STATISTICAL PHYSICS, 2014, 154 (05) :1241-1250
[50]   Anomalous diffusion: nonlinear fractional Fokker-Planck equation [J].
Tsallis, C ;
Lenzi, EK .
CHEMICAL PHYSICS, 2002, 284 (1-2) :341-347