On the stability and existence of common Lyapunov functions for stable linear switching systems

被引:0
|
作者
Shorten, Robert N. [1 ]
Narendra, Kumpati S. [1 ]
机构
[1] Yale Univ, New Haven, United States
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:3723 / 3724
相关论文
共 50 条
  • [31] Stability analysis of nonlinear systems via piecewise linear Lyapunov functions
    Ohta, Y
    Yamamoto, K
    ISCAS 2000: IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - PROCEEDINGS, VOL II: EMERGING TECHNOLOGIES FOR THE 21ST CENTURY, 2000, : 208 - 211
  • [32] Quadratic and copositive lyapunov functions and the stability of positive switched linear systems
    Mason, Oliver
    Shorten, Robert
    2007 AMERICAN CONTROL CONFERENCE, VOLS 1-13, 2007, : 2336 - 2341
  • [33] NONQUADRATIC LYAPUNOV FUNCTIONS FOR ROBUST STABILITY ANALYSIS OF LINEAR UNCERTAIN SYSTEMS
    ZELENTSOVSKY, AL
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1994, 39 (01) : 135 - 138
  • [34] On parameter-dependent Lyapunov functions for robust stability of linear systems
    Henrion, D
    Arzelier, D
    Peaucelle, D
    Lasserre, JB
    2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 887 - 892
  • [35] Constrained switching stabilization of linear uncertain switched systems using piecewise linear Lyapunov functions
    Yfoulis, Christos A.
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2010, 32 (05) : 529 - 566
  • [36] A new class of Lyapunov functions for nonstandard switching systems: the stability analysis problem
    Gonzaga, Carlos A. Cavichioli
    Jungers, Marc
    Daafouz, Jamal
    Castelan, Eugenio B.
    2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 411 - 416
  • [37] EXISTENCE OF PIECEWISE LINEAR LYAPUNOV FUNCTIONS IN ARBITRARY DIMENSIONS
    Giesl, Peter
    Hafstein, Sigurdur
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (10) : 3539 - 3565
  • [38] A sufficient condition for the existence of a common Lyapunov function for two second order linear systems
    Shorten, RN
    Narendra, KS
    PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 3521 - 3522
  • [39] Global existence for parabolic systems by Lyapunov functions
    Adrian Constantin
    Nonlinear Differential Equations and Applications NoDEA, 2005, 12 : 383 - 389
  • [40] Global existence for parabolic systems by Lyapunov functions
    Constantin, A
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2005, 12 (03): : 383 - 389