Stochastic stability of a beam under non-stationary impulsive parametric excitation

被引:0
作者
Wojcicki, Z.
Iwankiewicz, R.
机构
来源
Rozprawy Inzynierskie | 1988年 / 36卷 / 04期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
[11]   Determination of stochastic characteristics of seismic non-stationary random excitation processes [J].
Naprstek, J ;
Fischer, C .
SEISMIC DESIGN PRACTICE INTO THE NEXT CENTURY: RESEARCH AND APPLICATION, 1998, :237-244
[12]   Non-Stationary Stochastic Optimization [J].
Besbes, Omar ;
Gur, Yonatan ;
Zeevi, Assaf .
OPERATIONS RESEARCH, 2015, 63 (05) :1227-1244
[13]   Models of non-linear waveguide excitation by non-stationary light beam [J].
Romanova, Elena A. ;
Janyani, Vijay ;
Vukovic, Ana ;
Sewell, Phillip ;
Benson, Trevor M. .
OPTICAL AND QUANTUM ELECTRONICS, 2007, 39 (10-11) :813-823
[14]   Models of non-linear waveguide excitation by non-stationary light beam [J].
Elena A. Romanova ;
Vijay Janyani ;
Ana Vukovic ;
Phillip Sewell ;
Trevor M. Benson .
Optical and Quantum Electronics, 2007, 39 :813-823
[15]   Evaluation of the methods for response analysis under non-stationary excitation [J].
Jangid, RS ;
Datta, TK .
SHOCK AND VIBRATION, 1999, 6 (5-6) :285-297
[16]   Non-stationary response statistics of nonlinear oscillators with fractional derivative elements under evolutionary stochastic excitation [J].
Fragkoulis, V. C. ;
Kougioumtzoglou, I. A. ;
Pantelous, A. A. ;
Beer, M. .
NONLINEAR DYNAMICS, 2019, 97 (04) :2291-2303
[17]   Non-Parametric Stochastic Policy Gradient with Strategic Retreat for Non-Stationary Environment [J].
Dastider, Apan ;
Lin, Mingjie .
2022 IEEE 18TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2022, :1377-1384
[18]   Non-stationary response statistics of nonlinear oscillators with fractional derivative elements under evolutionary stochastic excitation [J].
V. C. Fragkoulis ;
I. A. Kougioumtzoglou ;
A. A. Pantelous ;
M. Beer .
Nonlinear Dynamics, 2019, 97 :2291-2303
[19]   Non-stationary response of non-linear systems subjected to combined periodic and non-stationary stochastic excitation via the statistical linearization method [J].
Kong F. ;
Han R.-J. ;
Zhang Y.-J. .
Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2022, 35 (03) :625-634
[20]   Stationary and non-stationary oscillatory dynamics of the parametric pendulum [J].
Kovaleva, Margarita ;
Manevitch, Leonid ;
Romeo, Francesco .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 76 :1-11