On essential components of the set of Nash equilibrium points

被引:0
作者
Yu, Jian [1 ]
Xiang, Shu-wen [1 ]
机构
[1] Institute of Applied Mathematics, Guizhou University of Technology, Guiyang, Guizhou, 550003, China
来源
Nonlinear Analysis, Theory, Methods and Applications | 1999年 / 38卷 / 02期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:259 / 264
相关论文
共 50 条
[21]   On existence and essential components for solution set for system of strong vector quasi-equilibrium problems [J].
Zhe Yang ;
Yong Jian Pu .
Journal of Global Optimization, 2013, 55 :253-259
[22]   On existence and essential components for solution set for system of strong vector quasi-equilibrium problems [J].
Yang, Zhe ;
Pu, Yong Jian .
JOURNAL OF GLOBAL OPTIMIZATION, 2013, 55 (02) :253-259
[23]   GENERIC STABILITY AND EXISTENCE OF ESSENTIAL COMPONENTS OF THE SOLUTION SET FOR THE SYSTEM OF GENERALIZED VECTOR EQUILIBRIUM PROBLEMS [J].
Lin Zhi Yu Jian College of ScienceChongqing Jiaotong UnivChongqing China Deptof MathGuizhou UnivGuiyang China .
AppliedMathematics:AJournalofChineseUniversities(SeriesB), 2007, (04) :497-504
[24]   Generic stability and existence of essential components of the solution set for the system of generalized vector equilibrium problems [J].
Lin Z. ;
Yu J. .
Applied Mathematics-A Journal of Chinese Universities, 2007, 22 (4) :497-504
[25]   ESSENTIAL SETS OF FIXED POINTS FOR CORRESPONDENCES WITH APPLICATION TO NASH EQUILIBRIA [J].
Song, Qi-Qing ;
Guo, Min ;
Chen, Hua-Zhou .
FIXED POINT THEORY, 2016, 17 (01) :141-150
[26]   Generalized Nash equilibrium problem over a fuzzy strategy set [J].
Wang, Xing ;
Teo, Kok Lay .
FUZZY SETS AND SYSTEMS, 2022, 434 :172-184
[27]   Topology of Nash Equilibrium Set with Quadratic Vector Payoff Functions [J].
Guo, Zehui ;
Hayakawa, Tomohisa .
2024 AMERICAN CONTROL CONFERENCE, ACC 2024, 2024, :845-850
[28]   Solution set in a special case of generalized Nash equilibrium games [J].
Cach, J .
KYBERNETIKA, 2001, 37 (01) :21-37
[29]   Extended set method for computing Nash equilibrium points in a bilinear non-zero-sum two-person game [J].
Antipin, A.S. ;
Vasil'ev, F.P. ;
Delavarkhalafi, A. .
2003, Izdatel'stvo Moskovskogo Universiteta
[30]   On some properties of Nash equilibrium points in two-person games [J].
Nikol'skii, M. S. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 291 (01) :232-236