Local a posteriori error estimators for variational inequalities

被引:0
|
作者
Ainsworth, Mark [1 ]
Oden, J.Tinsley [1 ]
Lee, C.Y. [1 ]
机构
[1] Univ of Texas at Austin, Austin, United States
关键词
Finite element method;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:23 / 33
相关论文
共 50 条
  • [1] A posteriori error analysis for parabolic variational inequalities
    Moon, Kyoung-Sook
    Nochetto, Ricardo H.
    von Petersdorff, Tobias
    Zhang, Chen-Song
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2007, 41 (03): : 485 - 511
  • [2] A posteriori error analysis for elliptic variational inequalities of the second kind
    Bostan, V
    Han, W
    Reddy, BD
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 1867 - 1870
  • [3] A posteriori error estimators for convection-diffusion eigenvalue problems
    Gedicke, J.
    Carstensen, C.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 268 : 160 - 177
  • [4] A posteriori error estimation for finite element solutions of Helmholtz' equation .1. The quality of local indicators and estimators
    Babuska, I
    Ihlenburg, F
    Strouboulis, T
    Gangaraj, SK
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1997, 40 (18) : 3443 - 3462
  • [5] A posteriori error estimators in finite element method for time and frequency domain
    Gawrylczyk, Konstanty Marek
    Alkhatib, Fawwaz
    PRZEGLAD ELEKTROTECHNICZNY, 2007, 83 (11): : 216 - 218
  • [6] Robust a posteriori error estimators for mixed approximation of nearly incompressible elasticity
    Khan, Arbaz
    Powell, Catherine E.
    Silvester, David J.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2019, 119 (01) : 18 - 37
  • [7] A posteriori error estimators for mixed finite element methods in linear elasticity
    Marco Lonsing
    Rüdiger Verfürth
    Numerische Mathematik, 2004, 97 : 757 - 778
  • [8] A posteriori error estimators for mixed finite element methods in linear elasticity
    Lonsing, M
    Verfürth, R
    NUMERISCHE MATHEMATIK, 2004, 97 (04) : 757 - 778
  • [9] Symmetry reductions and a posteriori finite element error estimators for bifurcation problems
    Chien, CS
    Jeng, BW
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (07): : 2091 - 2107
  • [10] Low cost a posteriori error estimators for an augmented mixed FEM in linear elasticity
    Barrios, Tomas P.
    Behrens, Edwin M.
    Gonzalez, Maria
    APPLIED NUMERICAL MATHEMATICS, 2014, 84 : 46 - 65