Local-global version of a stepsize control for Runge-Kutta methods

被引:0
|
作者
机构
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we develop a new procedure to control stepsize for Runge-Kutta methods applied to both ordinary differential equations and semi-explicit index 1 differential-algebraic equations. In contrast to the standard approach, the error control mechanism presented here is based on monitoring and controlling both the local and global errors of Runge-Kutta formulas. As a result, Runge-Kutta methods with the local-global stepsize control solve differential or differential-algebraic equations with any prescribed accuracy (up to round-off errors). For implicit Runge-Kutta formulas we give the sufficient number of both full and modified Newton iterations allowing the iterative approximations to be correctly used in the procedure of the local-global stepsize control. In addition, we develop a stable local-global error control mechanism which is applicable for stiff problems. Numerical tests support the theoretical results of the paper.
引用
收藏
页码:289 / 318
相关论文
共 50 条
  • [31] SUITABILITY OF RUNGE-KUTTA METHODS
    LIU, MZ
    DEKKER, K
    SPIJKER, MN
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1987, 20 : 307 - 315
  • [32] CANONICAL RUNGE-KUTTA METHODS
    LASAGNI, FM
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1988, 39 (06): : 952 - 953
  • [33] Stepsize selection for tolerance proportionality in explicit Runge-Kutta codes
    Calvo, M
    Higham, DJ
    Montijano, JI
    Randez, L
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 1997, 7 (03) : 361 - 382
  • [34] OPTIMUM RUNGE-KUTTA METHODS
    HULL, TE
    JOHNSTON, RL
    MATHEMATICS OF COMPUTATION, 1964, 18 (86) : 306 - +
  • [35] CONTRACTIVITY OF RUNGE-KUTTA METHODS
    KRAAIJEVANGER, JFBM
    BIT, 1991, 31 (03): : 482 - 528
  • [36] Accelerated Runge-Kutta methods
    Udwadia, Firdaus E.
    Farahani, Artin
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2008, 2008
  • [37] INTERPOLATION FOR RUNGE-KUTTA METHODS
    SHAMPINE, LF
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1985, 22 (05) : 1014 - 1027
  • [38] On global error control in nested implicit Runge-Kutta methods of the Gauss type
    Kulikov G.Y.
    Kuznetsov E.B.
    Khrustaleva E.Y.
    Numerical Analysis and Applications, 2011, 4 (3) : 199 - 209
  • [39] Error in Runge-Kutta methods
    Prentice, J. S. C.
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2013, 44 (03) : 434 - 442
  • [40] EQUILIBRIA OF RUNGE-KUTTA METHODS
    HAIRER, E
    ISERLES, A
    SANZSERNA, JM
    NUMERISCHE MATHEMATIK, 1990, 58 (03) : 243 - 254