Subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems

被引:0
|
作者
Branch, Mary Ann [1 ]
Coleman, Thomas F. [2 ]
Li, Yuying [2 ]
机构
[1] MathWorks, Inc., 24 Prime Park Way, Natick, MA 01760, United States
[2] Computer Science Department, Center for Applied Mathematics, Cornell University, Ithaca, NY 14850, United States
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1 / 23
相关论文
共 50 条
  • [22] A New Subspace Minimization Conjugate Gradient Method for Unconstrained Minimization
    Zexian Liu
    Yan Ni
    Hongwei Liu
    Wumei Sun
    Journal of Optimization Theory and Applications, 2024, 200 : 820 - 851
  • [23] A New Subspace Minimization Conjugate Gradient Method for Unconstrained Minimization
    Liu, Zexian
    Ni, Yan
    Liu, Hongwei
    Sun, Wumei
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 200 (02) : 820 - 851
  • [24] A Truncated Newton Method for the Solution of Large-Scale Inequality Constrained Minimization Problems
    Francisco Facchinei
    Giampaolo Liuzzi
    Stefano Lucidi
    Computational Optimization and Applications, 2003, 25 : 85 - 122
  • [25] A truncated Newton method for the solution of large-scale inequality constrained minimization problems
    Facchinei, F
    Liuzzi, G
    Lucidi, S
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2003, 25 (1-3) : 85 - 122
  • [26] PNKH-B: A PROJECTED NEWTON-KRYLOV METHOD FOR LARGE-SCALE BOUND-CONSTRAINED OPTIMIZATION
    Kan, Kelvin
    Fung, Samy Wu
    Ruthotto, Lars
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (05): : S704 - S726
  • [27] An active set feasible method for large-scale minimization problems with bound constraints
    De Santis, M.
    Di Pillo, G.
    Lucidi, S.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2012, 53 (02) : 395 - 423
  • [28] An active set feasible method for large-scale minimization problems with bound constraints
    M. De Santis
    G. Di Pillo
    S. Lucidi
    Computational Optimization and Applications, 2012, 53 : 395 - 423
  • [29] A Conjugate Gradient Method with Global Convergence for Large-Scale Unconstrained Optimization Problems
    Yao, Shengwei
    Lu, Xiwen
    Wei, Zengxin
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [30] VECTORIZATION OF CONJUGATE-GRADIENT METHODS FOR LARGE-SCALE MINIMIZATION IN METEOROLOGY
    NAVON, IM
    PHUA, PKH
    RAMAMURTHY, M
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1990, 66 (01) : 71 - 93