Exact soliton solutions of the variable coefficient KdV-MKdV equation with three arbitrary functions

被引:0
作者
Yan, Zhenya
Zhang, Hongqing
机构
来源
Zhongguo Jixie Gongcheng/China Mechanical Engineering | 1999年 / 10卷 / 10期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1957 / 1961
相关论文
共 50 条
[41]   New Exact Solutions to the Combined KdV and mKdV Equation [J].
Yan-ze Peng .
International Journal of Theoretical Physics, 2003, 42 :863-868
[42]   New exact solutions to the combined KdV and mKdV equation [J].
Peng, YZ .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2003, 42 (04) :863-868
[43]   KAM TORI FOR DEFOCUSING KDV-MKDV EQUATION [J].
崔文艳 ;
弭鲁芳 ;
尹枥 .
Acta Mathematica Scientia, 2019, (01) :243-258
[44]   The Study of the Solution to a Generalized KdV-mKdV Equation [J].
Lv, Xiumei ;
Shao, Tengwei ;
Chen, Jiacheng .
ABSTRACT AND APPLIED ANALYSIS, 2013,
[45]   Kam Tori for Defocusing Kdv-Mkdv Equation [J].
Wenyan Cui ;
Lufang Mi ;
Li Yin .
Acta Mathematica Scientia, 2019, 39 :243-258
[46]   NUMERICAL-SIMULATION OF THE KDV-MKDV EQUATION [J].
TAHA, TR .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C-PHYSICS AND COMPUTERS, 1994, 5 (02) :407-410
[47]   KAM TORI FOR DEFOCUSING KDV-MKDV EQUATION [J].
Cui, Wenyan ;
Mi, Lufang ;
Yin, Li .
ACTA MATHEMATICA SCIENTIA, 2019, 39 (01) :243-258
[48]   EXACT-SOLUTIONS TO THE COMBINED KDV AND MKDV EQUATION [J].
MOHAMAD, MNB .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1992, 15 (02) :73-78
[49]   New soliton-like solutions for KdV equation with variable coefficient [J].
Zhao, XQ ;
Tang, DB ;
Wang, LM .
PHYSICS LETTERS A, 2005, 346 (04) :288-291
[50]   SYMMETRIES AND A HIERARCHY OF THE COMBINED KDV-MKDV EQUATION [J].
ZHANG, JF ;
LIN, J .
COMMUNICATIONS IN THEORETICAL PHYSICS, 1995, 23 (01) :69-72