Exact soliton solutions of the variable coefficient KdV-MKdV equation with three arbitrary functions

被引:0
作者
Yan, Zhenya
Zhang, Hongqing
机构
来源
Zhongguo Jixie Gongcheng/China Mechanical Engineering | 1999年 / 10卷 / 10期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1957 / 1961
相关论文
共 50 条
  • [21] Painleve analysis, Lax pair, Backlund transformation and multi-soliton solutions for a generalized variable-coefficient KdV-mKdV equation in fluids and plasmas
    Meng, Gao-Qing
    Gao, Yi-Tian
    Yu, Xin
    Shen, Yu-Jia
    Qin, Yi
    PHYSICA SCRIPTA, 2012, 85 (05)
  • [22] Exact solutions of space-time fractional KdV-MKdV equation and Konopelchenko-Dubrovsky equation
    Tang, Bo
    Tao, Jiajia
    Chen, Shijun
    Qu, Junfeng
    Wang, Qian
    Ding, Ling
    OPEN PHYSICS, 2020, 18 (01): : 871 - 880
  • [23] The multiple exact solutions for the variable coefficient KdV equation
    Tian, Lin
    Miao, Jia-qing
    APPLIED SCIENCE, MATERIALS SCIENCE AND INFORMATION TECHNOLOGIES IN INDUSTRY, 2014, 513-517 : 4474 - 4477
  • [24] Bifurcations of travelling wave solutions for the combined kdv-mkdv equation
    Li, Hong
    Ma, Lilin
    Wang, Kanmin
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (08) : 3296 - 3304
  • [25] Lie Group Analysis, Exact Solutions and New Conservation Laws for Combined KdV-mKdV Equation
    Chen, Cheng
    Jiang, Yao-Lin
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2020, 28 (04) : 827 - 840
  • [26] Jacobi, elliptic function solutions to the coupled KdV-mKdV equation
    Pan Jun-Ting
    Gong Lun-Xun
    ACTA PHYSICA SINICA, 2007, 56 (10) : 5585 - 5590
  • [27] New solitary wave solutions for the combined KdV-MKdV equation
    Lu, Dianchen
    Shi, Qian
    Journal of Information and Computational Science, 2010, 7 (08): : 1733 - 1737
  • [28] Improved tanh-function method and the new exact solutions for the general variable coefficient KdV equation and MKdV equation
    Li, DS
    Zhang, HQ
    ACTA PHYSICA SINICA, 2003, 52 (07) : 1569 - 1573
  • [29] On traveling wave solutions to combined KdV-mKdV equation and modified Burgers-KdV equation
    Bekir, Ahmet
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (04) : 1038 - 1042
  • [30] A (2+1)-dimensional combined KdV-mKdV equation: integrability, stability analysis and soliton solutions
    Malik, Sandeep
    Kumar, Sachin
    Das, Amiya
    NONLINEAR DYNAMICS, 2022, 107 (03) : 2689 - 2701