Stability of a vortex in a small trapped Bose-Einstein condensate

被引:0
作者
Linn, Marion
Fetter, Alexander L.
机构
[1] Department of Physics, Stanford University, Stanford, CA 94305-4060, United States
[2] Physikalisches Institut, Universität Bonn, Nußallee 12, D-53115 Bonn, Germany
来源
Physical Review A - Atomic, Molecular, and Optical Physics | 1999年 / 60卷 / 06期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A second-order expansion of the Gross-Pitaevskii equation in the interaction parameter determines the thermodynamic critical angular velocity Ωc for the creation of a vortex in a small axisymmetric condensate. Similarly, a second-order expansion of the Bogoliubov equations determines the (negative) frequency ωa of the anomalous mode. Although Ωc=-ωa through first order, the second-order contributions ensure that the absolute value |ωa| is always smaller than the critical angular velocity Ωc. With increasing external rotation Ω, the dynamical instability of the condensate with a vortex disappears at Ω*=|ωa|, whereas the vortex state becomes energetically stable at the larger value Ωc. Both second-order contributions depend explicitly on the axial anisotropy of the trap. The appearance of a local minimum of the free energy for a vortex at the center determines the metastable angular velocity Ωm. A variational calculation yields Ωm=|ωa| to first order (hence Ωm also coincides with the critical angular velocity Ωc to this order). Qualitatively, the scenario for the onset of stability in the weak-coupling limit is the same as that found in the strong-coupling (Thomas-Fermi) limit.
引用
收藏
页码:4910 / 4917
相关论文
共 50 条
[41]   Quantum turbulence in a trapped Bose-Einstein condensate [J].
Kobayashi, Michikazu ;
Tsubota, Makoto .
PHYSICAL REVIEW A, 2007, 76 (04)
[42]   Quantum state of a trapped Bose-Einstein condensate [J].
Dunningham, JA ;
Collett, MJ ;
Walls, DF .
PHYSICS LETTERS A, 1998, 245 (1-2) :49-54
[43]   Overcritical rotation of a trapped Bose-Einstein condensate [J].
Recati, A ;
Zambelli, F ;
Stringari, S .
PHYSICAL REVIEW LETTERS, 2001, 86 (03) :377-380
[44]   Bending-wave instability of a vortex ring in a trapped Bose-Einstein condensate [J].
Horng, T. -L. ;
Gou, S. -C. ;
Lin, T. -C. .
PHYSICAL REVIEW A, 2006, 74 (04)
[45]   Vortex Stability in a Trapped Bose Condensate [J].
Alexander L. Fetter .
Journal of Low Temperature Physics, 1998, 113 :189-194
[46]   Vortex stability in a trapped Bose condensate [J].
Fetter, AL .
JOURNAL OF LOW TEMPERATURE PHYSICS, 1998, 113 (3-4) :189-194
[47]   Vortex precession and exchange in a Bose-Einstein condensate [J].
Julien Garaud ;
Jin Dai ;
Antti J. Niemi .
Journal of High Energy Physics, 2021
[48]   The structure of a quantized vortex in a Bose-Einstein condensate [J].
Tang, JM .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2000, 121 (5-6) :287-292
[49]   The Structure of a Quantized Vortex in a Bose-Einstein Condensate [J].
Jian-Ming Tang .
Journal of Low Temperature Physics, 2000, 121 :287-292
[50]   Vortex dynamics in an annular Bose-Einstein condensate [J].
Woo, S. J. ;
Son, Young-Woo .
PHYSICAL REVIEW A, 2012, 86 (01)