Stability of a vortex in a small trapped Bose-Einstein condensate

被引:0
作者
Linn, Marion
Fetter, Alexander L.
机构
[1] Department of Physics, Stanford University, Stanford, CA 94305-4060, United States
[2] Physikalisches Institut, Universität Bonn, Nußallee 12, D-53115 Bonn, Germany
来源
Physical Review A - Atomic, Molecular, and Optical Physics | 1999年 / 60卷 / 06期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A second-order expansion of the Gross-Pitaevskii equation in the interaction parameter determines the thermodynamic critical angular velocity Ωc for the creation of a vortex in a small axisymmetric condensate. Similarly, a second-order expansion of the Bogoliubov equations determines the (negative) frequency ωa of the anomalous mode. Although Ωc=-ωa through first order, the second-order contributions ensure that the absolute value |ωa| is always smaller than the critical angular velocity Ωc. With increasing external rotation Ω, the dynamical instability of the condensate with a vortex disappears at Ω*=|ωa|, whereas the vortex state becomes energetically stable at the larger value Ωc. Both second-order contributions depend explicitly on the axial anisotropy of the trap. The appearance of a local minimum of the free energy for a vortex at the center determines the metastable angular velocity Ωm. A variational calculation yields Ωm=|ωa| to first order (hence Ωm also coincides with the critical angular velocity Ωc to this order). Qualitatively, the scenario for the onset of stability in the weak-coupling limit is the same as that found in the strong-coupling (Thomas-Fermi) limit.
引用
收藏
页码:4910 / 4917
相关论文
共 50 条
[31]   Vortex knots in a Bose-Einstein condensate [J].
Proment, Davide ;
Onorato, Miguel ;
Barenghi, Carlo F. .
PHYSICAL REVIEW E, 2012, 85 (03)
[32]   Nonlinear stability of regular vortex polygons in a Bose-Einstein condensate [J].
Artemova, Elizaveta ;
Kilin, Alexander .
PHYSICS OF FLUIDS, 2021, 33 (12)
[33]   Vortex stabilization in a small rotating asymmetric Bose-Einstein condensate [J].
Linn, M ;
Niemeyer, M ;
Fetter, AL .
PHYSICAL REVIEW A, 2001, 64 (02) :1-11
[34]   Route to turbulence in a trapped Bose-Einstein condensate [J].
Seman, J. A. ;
Henn, E. A. L. ;
Shiozaki, R. F. ;
Roati, G. ;
Poveda-Cuevas, F. J. ;
Magalhaes, K. M. F. ;
Yukalov, V. I. ;
Tsubota, M. ;
Kobayashi, M. ;
Kasamatsu, K. ;
Bagnato, V. S. .
LASER PHYSICS LETTERS, 2011, 8 (09) :691-696
[35]   Vortices in a trapped dilute Bose-Einstein condensate [J].
Fetter, AL ;
Svidzinsky, AA .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (12) :R135-R194
[36]   Anomalous effects in a trapped Bose-Einstein condensate [J].
Benarous, Mohamed .
EUROPEAN PHYSICAL JOURNAL D, 2013, 67 (11)
[37]   Reservoir interactions of a vortex in a trapped three-dimensional Bose-Einstein condensate [J].
Rooney, S. J. ;
Allen, A. J. ;
Zulicke, U. ;
Proukakis, N. P. ;
Bradley, A. S. .
PHYSICAL REVIEW A, 2016, 93 (06)
[38]   Vortex creation in a trapped Bose-Einstein condensate by stimulated Raman adiabatic passage [J].
Nandi, G ;
Walser, R ;
Schleich, WP .
PHYSICAL REVIEW A, 2004, 69 (06) :063606-1
[39]   Stochastic dynamics of a trapped Bose-Einstein condensate [J].
Duine, RA ;
Stoof, HTC .
PHYSICAL REVIEW A, 2002, 65 (01) :25
[40]   Anomalous effects in a trapped Bose-Einstein condensate [J].
Mohamed Benarous .
The European Physical Journal D, 2013, 67