Stability of a vortex in a small trapped Bose-Einstein condensate

被引:0
作者
Linn, Marion
Fetter, Alexander L.
机构
[1] Department of Physics, Stanford University, Stanford, CA 94305-4060, United States
[2] Physikalisches Institut, Universität Bonn, Nußallee 12, D-53115 Bonn, Germany
来源
Physical Review A - Atomic, Molecular, and Optical Physics | 1999年 / 60卷 / 06期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A second-order expansion of the Gross-Pitaevskii equation in the interaction parameter determines the thermodynamic critical angular velocity Ωc for the creation of a vortex in a small axisymmetric condensate. Similarly, a second-order expansion of the Bogoliubov equations determines the (negative) frequency ωa of the anomalous mode. Although Ωc=-ωa through first order, the second-order contributions ensure that the absolute value |ωa| is always smaller than the critical angular velocity Ωc. With increasing external rotation Ω, the dynamical instability of the condensate with a vortex disappears at Ω*=|ωa|, whereas the vortex state becomes energetically stable at the larger value Ωc. Both second-order contributions depend explicitly on the axial anisotropy of the trap. The appearance of a local minimum of the free energy for a vortex at the center determines the metastable angular velocity Ωm. A variational calculation yields Ωm=|ωa| to first order (hence Ωm also coincides with the critical angular velocity Ωc to this order). Qualitatively, the scenario for the onset of stability in the weak-coupling limit is the same as that found in the strong-coupling (Thomas-Fermi) limit.
引用
收藏
页码:4910 / 4917
相关论文
共 50 条
[21]   Vortex Precession in a Rotating Nonaxisymmetric Trapped Bose-Einstein Condensate [J].
A. L. Fetter ;
J.-k. Kim .
Journal of Low Temperature Physics, 2001, 125 :239-248
[22]   Vortex stability near the surface of a Bose-Einstein condensate [J].
Al Khawaja, U .
PHYSICAL REVIEW A, 2003, 68 (06) :8
[23]   Stability of regular vortex polygons in Bose-Einstein condensate [J].
Kilin, A. A. ;
Artemova, E. M. .
IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2020, 56 :20-29
[24]   Vortex stability near the surface of a Bose-Einstein condensate [J].
Al Khawaja, U. .
Physical Review A - Atomic, Molecular, and Optical Physics, 2003, 68 (06) :1-063614
[25]   Stability and excitations of a dipolar Bose-Einstein condensate with a vortex [J].
Wilson, Ryan M. ;
Ronen, Shai ;
Bohn, John L. .
PHYSICAL REVIEW A, 2009, 79 (01)
[26]   Turbulence in a trapped Bose-Einstein condensate [J].
Seman, J. A. ;
Shiozaki, R. F. ;
Poveda-Cuevas, F. J. ;
Henn, E. A. L. ;
Magalhaes, K. M. F. ;
Roati, G. ;
Telles, G. D. ;
Bagnato, V. S. .
22ND INTERNATIONAL CONFERENCE ON ATOMIC PHYSICS, 2011, 264
[27]   Vortex in a trapped Bose-Einstein condensate with dipole-dipole interactions [J].
O'Dell, D. H. J. ;
Eberlein, C. .
PHYSICAL REVIEW A, 2007, 75 (01)
[28]   Output coupling from a trapped Bose-Einstein condensate in a vortex state [J].
Blakie, PB ;
Ballagh, RJ ;
Clark, CW .
PHYSICAL REVIEW A, 2003, 68 (02) :7
[29]   Vortex dipole in a trapped two-dimensional Bose-Einstein condensate [J].
Li, Weibin ;
Haque, Masudul ;
Komineas, Stavros .
PHYSICAL REVIEW A, 2008, 77 (05)
[30]   Stability analysis of a Bose-Einstein condensate trapped in a generic potential [J].
Castellanos, Elias ;
Escamilla-Rivera, Celia ;
Reyes-Ibarra, Mayra J. .
EUROPEAN PHYSICAL JOURNAL D, 2018, 72 (09)